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Complex systems consist of many interacting elements which participate in some dynamical pro-
cess. The activity of various elements is often different and the fluctuation in the activity of an
element grows monotonically with the average activity. This relationship is often of the form
”fluctuations ≈ const. × averageα”, where the exponent α is predominantly in the range [1/2, 1].
This power law has been observed in a very wide range of disciplines, ranging from population dy-
namics through the Internet to the stock market and it is often treated under the names Taylor’s
law or fluctuation scaling. This review attempts to show how general the above scaling relationship
is by surveying the literature, as well as by reporting some new empirical data and model calcu-
lations. We also show some basic principles that can underlie the generality of the phenomenon.
This is followed by a mean-field framework based on sums of random variables. In this context
the emergence of fluctuation scaling is equivalent to some corresponding limit theorems. In certain
physical systems fluctuation scaling can be related to finite size scaling.
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1. INTRODUCTION

Interacting systems of many units with emergent col-
lective behavior are often termed ”complex”. Such com-
plex systems are ubiquitous in many fields of research
ranging from engineering sciences through physics and
biology to sociology. An advantage of the related multi-
disciplinary approach is that the universal appearance of
several phenomena can be revealed more easily. Such
generally observed characteristics include (multi-)frac-
tality or scale invariance [1, 2], the related Pareto or Zipf
laws [3, 4], self-organized and critical behavior.

In this paper we study such a general feature related to
the scaling properties of the fluctuations in complex sys-
tems. This type of scaling relationship is called Taylor’s
law by ecologists after L.R. Taylor and his influential pa-
per on natural populations in 1961 [5]. The law states
that for any fixed species the fluctuations in the size of a
population (characterized by the standard deviation) can
be approximately written as a constant times the average
population to a power α:

fluctuations ≈ const. × averageα

for a wide range of the average.
The phenomenon was – to our knowledge – first dis-

covered by H. Fairfield Smith in 1938 [6], who wrote an
equivalent formula for the yield of crop fields though his
paper has, surprisingly, received much less attention than
Taylor’s work. The same relationship was explored re-
cently by Menezes and Barabási [7] for dynamics on com-
plex networks, and later termed ”fluctuation scaling” [8]
in the physics literature. There the temporal fluctuations
and the averages of the network’s traffic were measured
at the different nodes.

Despite the analogous questions, the exchange of ideas
between disciplines is very limited. This review attempts
to show how general the above observation is by survey-
ing the literature and the current models, as well as by
reporting some new empirical data and presenting new
model calculations. We also have the aim to step be-
yond mere demonstration, and show some basic princi-
ples that can potentially underlie the generality of the
phenomenon. We present a mean-field framework based
on sums of random variables, and show that in this model
the emergence of fluctuation scaling is equivalent to some
corresponding limit theorems. Fluctuation scaling can be
directly applied to certain physical systems, where one
finds a strong connection with finite size scaling.

The paper is organized as follows. Section 2 gives a
more precise definition of fluctuation scaling, and then
presents a short overview of empirical results from the lit-
erature. This is followed by some previously unpublished

findings. Section 3 gives a general formalism based on the
sums of random variables, followed by the interpretation
of the scaling exponent α, and how it reflects the dy-
namics of the complex system. Some simple models are
discussed in Section 4, and the relationship between fluc-
tuation scaling, (self-organized) criticality, scaling and
multiscaling is explored. Section 5 gives a general dis-
cussion and Section 6 concludes. Some calculations were
deferred to the Appendices. Please note that ”log” de-
notes 10-base logarithms throughout the paper.

2. FLUCTUATION SCALING

2.1. Basic notions

Throughout the paper we will always consider some ad-
ditive quantity f , and the dependence between its mean
and standard deviation. By dependence we mean the be-
havior of f over a multitude of observations. Say, if we
can observe the same dynamical variable in several set-
tings where it has different means, how does the standard
deviation change with the value of the mean?

In order to determine this dependence one needs many
realizations. These can be simultaneous temporal obser-
vations for different elements (nodes, subsystems) of a
large complex system. The measured means and stan-
dard deviations are then calculated in time, and the sub-
systems are compared: for subsystems with a larger mean
f are the fluctuations larger as well?

In other cases f is not considered as time dependent,
only as a fixed value for every subsystem. Then the av-
erages are taken over an ensemble of subsystems of equal
size, and the standard deviation characterizes the varia-
tion of f between subsystems of the same size.

We just used the expressions ”elements”, ”nodes”, ”sub-
systems” and ”the same size”, but what do these mean?
Imagine that we want to quantify fluctuations in the traf-
fic of Internet routers. It is very straightforward to cal-
culate the mean and the standard deviation of, say, daily
data throughput, and the question whether routers with
larger mean traffic exhibit larger fluctuations can be in-
vestigated. However, routers are not ”subsystems” of the
Internet. They merely represent points of measurement,
elements of the system. The traffic is formed as a sum
of data packets that are ”extrinsic” to the elements. The
packets do not belong to the structure of the network,
but they carry the dynamics on it. Here we are not in-
terested in the structure of the routers, i.e., the nodes.
Instead, the data over which the averages are taken have
a temporal structure.

Let us take a different example. Now we want to ana-
lyze data on the size of animal populations. A population
can be divided into smaller groups, which then consist of
individuals, and this gives a true notion of size. Various
smaller areas can be naively considered as ”subsystems”
with respect to the habitat of the species, for example a
continent. These subsystems are not structureless, and
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their population comes about as a sum over their smaller
subgroups of individuals.

In our review we will call the points of measurement
as nodes, whether they have a structure or not. The ad-
ditive quantity under study, be it activity, population,
traffic or whatever else, will be denoted by fi, where i
indicates the node of measurement. This will always be
decomposed as a sum of random variables, which will ei-
ther represent internal constituents or some events simi-
lar to the arrival of the extrinsic ”packets”to the Internet
routers. In both cases we will call these the constituents

of the nodes/signals. Their number for node i will be de-
noted by Ni, and their respective contributions to f will
be denoted by Vi,n, where n = 1 . . .Ni. Examples of the
scheme for building up a system from constituents can be
seen in Table I. Now we turn to more precise definitions.

2.1.1. Temporal fluctuation scaling (TFS)

Let us assume that during an extended period we can
measure an additive quantity fi within a system at its
nodes (labeled by the index i). For some finite time du-
ration [t, t + ∆t) the signal can be formally decomposed
as the sum

f∆t
i (t) =

N∆t
i (t)
∑

n=1

V ∆t
i,n (t). (1)

N∆t
i (t) is the number of constituents of node i during

[t, t + ∆t). We assume that V ∆t
i,n (t) ≥ 0, so that the

time average of f∆t
i does not vanish. For example, if

on the stock market during [t, t + ∆t) there are N∆t
i (t)

transactions with the papers of the i’th company, and the
n’th of those transactions has a value V ∆t

i,n (t), then the
total trading activity of stock i can be calculated by this
formula.

The time average of Eq. (1), which we will denote as
〈
f∆t

i

〉
, can be calculated as

〈
f∆t

i

〉
=

1

Q

Q−1
∑

q=0

f∆t
i (q∆t) =

1

Q

Q−1
∑

q=0

N∆t
i (q∆t)
∑

n=1

V ∆t
i,n (q∆t),

(2)
where Q = T/∆t, and T is the total time of measure-
ment. From the definitions it is trivial that

〈
f∆t

i

〉
=

∆t
〈
f∆t=1

i

〉
. We will use 〈fi〉 without the upper index to

denote this latter quantity.
On any time scale the variance can be obtained as a

time average:

σ2
i (∆t) =

〈
[f∆t

i ]2
〉
−
〈
f∆t

i

〉2
,

this quantity characterizes the fluctuations of the activity
of a fixed node i from interval to interval.

When f is positive and additive, it is often observed
that the relationship between the standard deviation and

the mean of f is given by a power law:

σi(∆t) ∝
〈
f∆t

i

〉αT

,

where one varies the node i, and ∆t is fixed. The de-
pendence of the right hand side on ∆t is trivial, since
〈
f∆t

i

〉
≡ ∆t 〈fi〉. Thus throughout the paper we will use

〈fi〉 as the scaling variable:

σi(∆t) ∝ 〈fi〉αT . (3)

The exponent αT is usually in the range [1/2, 1]. The
lower index T in the scaling exponent indicates that the
statistical quantities are defined as temporal averages as
in Eq. (2).

Finally, if the i-dependence of σ and 〈f〉 is only mani-
fested via a well defined parameter of the nodes, such as
their linear extent (L), area (A), a fixed number of con-
stituents (N) or some other size-like parameter S, then
we will use this quantity as lower index where possible.
For example temporal standard deviation will be denoted
as σS .

2.1.2. Ensemble fluctuation scaling (EFS)

Again imagine that nodes have a well defined size-like
parameter S, and it is possible to group them accord-
ing to that. Furthermore, assume that nodes that fall
into the same group have equivalent statistical proper-
ties. Then aside from the temporal average given sepa-
rately for each node, one can also define the average of
f within each group. This is a sort of ensemble average

over similar nodes, it will be denoted by f∆t
S , and it can

be calculated as

f∆t
S =

1

MS

∑

∀i:Si=S

f∆t
i (t) (4)

Both t and ∆t are now fixed, the summation instead goes
for those nodes i which have a size Si = S, and MS is
the number of such nodes. In the notation we will omit
t for simplicity. Variance is given by

σ2
S(∆t) = [f∆t

S ]2 − f∆t
S

2
.

Fluctuation scaling can also arise here in the form

σS(∆t) ∝ fS
αE

, (5)

where we compare different groups by varying S, while
∆t is kept constant. For convenience we follow the con-
vention of the previous part: On the right hand side of

Eq. (5) we write fS , which is a short notation for f∆t=1
S .

The scaling exponent αE will always indicate when we
use ensemble averaging over elements of the same size.

For data analysis the size S very often corresponds to
the linear size L, or the area A of the node/subsystem,
and there the lower index will be changed accordingly.
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constituents → nodes/elements → complex system

Vi,n, n = 1, . . . , Ni → fi, i = 1, . . . , M → total activity

a group of individuals → a population → a species

a single tree → a single forest → all forests of a continent

a single data packet → router → Internet

a single car → measurement point → highway system

Table I: Examples of building up a system from its constituents. The symbol → indicates that the kind of object on the right
is made up by several ones of the kind on the left.

For example, the classic study of Taylor [5] compares
areas of different size A, and the measured quantity is
the population size of a given species in the area. The
constituents can be smaller groups or, as usually called,
metapopulations. If one considers the number of groups
(N) and the size of the groups (Vn) as random variables,
the total population has the same sum form as before:

fi =

Ni∑

n=1

Vi,n,

which is the analogue of Eq. (1).
We will call the relationship (3) temporal fluctua-

tion scaling (TFS), and (5) ensemble fluctuation scaling
(EFS). When we do not wish to distinguish between the
two cases, we will simply use fluctuation scaling (FS), and
then the exponent will be denoted by α without lower
index. There exists a large body of results on these sub-
jects, and the literature is spread over many disciplines.
Therefore in the following we would like to give a (nec-
essarily incomplete) overview of the results. A summary
is presented in Table II.

2.2. Empirical results: ensemble averages

2.2.1. Pioneering studies

As noted in the introduction, the first observations of
fluctuation scaling appeared in two independent studies,
well before the widespread recognition of fractality and
scaling [9]. The paper of Fairfield Smith [6] was published
in 1938, and it was concerned with the yields of agricul-
tural crops. For a fixed size of land (A) it is possible to
calculate the average yield fA of a certain type of crop,
and the standard deviation σA of the yield between areas
of size A. Then the calculation can be done for areas of
many different sizes. It was found that there exists the
power law (5) relationship between the two quantities,

σA ∝ fA
αE

, with αE ≈ 0.62.
Taylor’s 1961 paper [5] stated the scaling law (5) for

systems in population dynamics. Similarly to Fairfield
Smith, Taylor took an ensemble of areas of the same size,
and measured the number of individuals of a certain type
of animal. With increasing area size both the mean and

the variance of the population grew, with a power law
relationship between the two quantities. Let us now take
a closer look at fluctuations in ecology.

2.2.2. Ecology

Stable populations of a given area fluctuate around a
typical size called its carrying capacity [10, 11, 12]. These
fluctuations have a very rich internal structure [12]. Both
the randomness of birth-death processes (a kind of ”in-
trinsic noise”) and external climatic forcing play an im-
portant role [12, 13]. The effect of climatic factors is so
strong that it can synchronize the fluctuations of even
non-interacting populations (the so-called Moran effect)
[11, 14]. To further complicate the situation, individuals
of a species interact among themselves, just as well as
species interact with each other. These interactions are
non-linear and by now they are also commonly recog-
nized to have a significant dependence on the population
density/size. So interaction, strong driving and noise all
contribute to population dynamics to a certain degree
[12, 13]. This diversity makes any ecosystem a show-
case of complexity; certain regularities are known, but
the bigger picture is still missing.

This is the reason why by discovering a universal law,
Taylor’s paper [5] triggered a growing activity in ecology,
with literally a thousand publications to date. Taylor’s
results were verified for a wide range of populations, and
the value of the exponent was predominantly found to
be 1/2 ≤ αE ≤ 1 [15]. Despite its generality, the origins
of the law and the meaning of α are still much debated.
Anderson et al. [16] suggested that the influence of en-
vironmental fluctuations may be responsible for the ob-
served non-trivial exponents. The model of Kendal [17]
proposed a dynamics similar to Diffusion Limited Ag-
gregation in which self-similarity gives rise to the mean-
variance scaling. Another study [18] proposed that the
exponents can be described by a class of statistical mod-
els, which rely on the interplay between the number of
animal clusters in an area and the size of the individual
clusters. We will discuss these models in detail in Sec-
tion 3.3.3. For two comprehensive reviews of these (and
more) scaling laws in ecological and related systems see
Kendal [18] and Marquet et al. [19].
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 Wireworms, E = 0.63
 Corn borer larvae, E = 0.83
 Wireworms, E = 0.6
 Jap. beetle larvae, E = 0.76

A
2

fA

Ecology (EFS)

Figure 1: Fluctuation scaling for ensemble averages of the
population of four species. Every point represents the mean

fA and variance σ2
A over an ensemble of areas of the same size

A [5]. The bottom dashed line corresponds to αE = 1/2, the
top one to αE = 1. Points were shifted both vertically and
horizontally for better visibility.

2.2.3. Life sciences

There is a number of findings from cellular and molec-
ular biology regarding FS. Azevedo and Leroi [20] con-
ducted a very extensive study of how the typical cell
count of a species is related to its fluctuations from indi-
vidual to individual. They found that Eq. (5) holds over
almost 10 orders of magnitude in size, between more than
2000 species, see Fig. 2. The exponent αE differs among
tissue types, but for entire organisms its value is approx-
imately 1. Kendal [21] presents similar findings for the
number of tumor cells in groups of mice, but the expo-
nents vary.

Similarly, based on the data collected by The Interna-
tional SNP Map Working Group [22], Kendal [23] an-
alyzed for the most common variations in the human
genome called Single Nucleotide Polymorphisms (SNPs).
He found that mean number and variance of the number
of SNPs in a DNA sequence scale as different non-trivial
powers of the length of the sequence, and thus the vari-
ance also scales with the mean.

2.2.4. Physics

FS has been present in the physics literature as well.
Many extensive quantities are known to have equilibrium
fluctuations proportional to the square root of the system
size, implying the value αE = 1/2 [24, 25]. This relation-
ship is a simple consequence of the central limit theorem
(see Section 3.2.1). Botet et al. [26, 27, 28] find EFS

0 2 4 6 8 10 12

0

3

6

9

12

lo
g 

log f

Cell count (EFS)

Figure 2: Fluctuation scaling for the cell count of species.
For every species the average cell count f and its variance
σ2 was calculated separately. Then these points were binned
logarithmically for better visibility, error bars show the stan-
dard deviation of log σ in the bins. αE = 1. Data courtesy of
Ricardo Azevedo [20].

for a wide range of models, and also for the fragment
multiplicity measured in heavy-ion collision experiments.
Moreover, a linear (α = 1) relationship was found be-
tween the fluctuations and mean fluxes of cosmic radia-
tion has also been found [29, 30]. Here the ensemble is
formed by cutting a single time series into pieces, and
then periods with higher average activity exhibit higher
fluctuations.

2.3. Empirical results: temporal averages

We will now turn to temporal FS. For the collection
of such data it is necessary to have multi-channel mea-
surements, simultaneously monitoring the behavior of a
range of elements i. With the unbroken growth of com-
puting infrastructure, many technological networks now
offer appropriate datasets, several publicly available.

2.3.1. Complex networks

Menezes and Barabási [7, 31], in part inspired by Tay-
lor’s original paper, found TFS for several complex net-
works. A good example is the analysis of Internet traf-
fic, which was later revisited by Duch and Arenas [32].
In their study they analyzed the traffic of the Abilene
backbone network. The nodes i correspond to routers,
and the mean and variance of their data flow was calcu-
lated. In Fig. 3 we show their results for weekly data
traffic, the best fit is achieved with αT ≈ 0.75. Menezes
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Figure 3: Fluctuation scaling for the traffic of Internet routers.
For every router the temporal average of weekly data traffic
〈fi〉 and its standard deviation σi was calculated separately.
Then these points were binned logarithmically for better vis-
ibility, error bars show the standard deviation of log σ in the
bins. The fitted exponent is αT = 0.75. Data courtesy of
Jordi Duch and Alex Arenas [32].

and Barabási also analyzed web page visitations, river
flow, microchip logical gates and highway traffic. They
proposed that the datasets should fall into two ”univer-
sality classes” with αT = 1/2 and 1. There also exists
a growing body of literature on transport processes on
networks, and the scaling of fluctuations in such systems
[32, 33, 34, 35, 36].

2.3.2. Ecology

Ecologists have made many advances regarding TFS
as well, but the literature is far from unequivocal. The
basic concept is to monitor many populations of a given
species for an extended period of time. Then for each
population i one calculates the temporal mean 〈fi〉 and
standard deviation σi of abundance. These are typically
power law related according to TFS, examples are shown
in Fig. 4.

Classical population dynamics offers several bench-
mark models [39, 40, 41], but simple deterministic and
Markovian models cannot explain the observed αT values
between 1/2 and 1. After a range of small populations
where they show realistic behavior, they cross over to ei-
ther αT = 1/2 or 1 [42]. The model of Kilpatrick and Ives
[37] suggested that the interaction between species and
feedback mechanisms between their fluctuations can give
rise to any value of αT. Perry proposed an even simpler
chaotic model [43]. Both of these models can yield vari-
ous exponents, but still only when populations are small

-1 0 1 2 3
-2

0

2

4

 Phorodon humuli
 Colostygia multistrigaria
 Ourapteryx sambucaria

T
 = 0.64

T
 = 0.81

lo
g 

log <f>

T
 = 1.05

Ecology (TFS)

Figure 4: Fluctuation scaling for temporal averages of the
population of three species. A point represents the temporal
mean 〈fi〉 and standard deviation σi of a population. The
bottom dashed line corresponds to αT = 1/2, the top one
to αT = 1. Points were shifted both vertically for better
visibility. Data courtesy of Marm Kilpatrick [37, 38].

enough.

There have been several findings for plant species. In
a series of papers Ballantyne and Kerkhoff showed that
the reproductive (yearly seed count) variability of trees
follows TFS with αT = 1. The same value is supported
by the Satake-Iwasa [44] forest model. There the trees
are modeled by interacting oscillators which synchronize
above a critical value of the coupling [45, 46]. The syn-
chronization transition coincides with a transition from
αT = 1/2 to αT = 1. 1

We will now briefly describe their empirical study [47],
which is based on the reproductive activity of Northern
Hemisphere trees. The data were compiled by Koenig
and Knops [48]. The dataset consists of yearly obser-
vations of the seed production of trees throughout the
Northern Hemisphere. In particular, we considered three
subsets of the dataset [49], those collected by Tallqvist
[50], Franklin [51] and Weaver and Forcella [52], includ-
ing 4 − 17 years of observations for 44, 148 and 28 sites,
respectively. The fits for TFS are given in Fig. 5(left).
The exponents for the three subsets were found to be
αT = 0.97, 0.93 and 0.90. Given the quality of the fits
it is not possible to outrule that for all three datasets
αT = 1 (as suggested by Ref. [47]). However, here we
make an attempt to give an argument that predicts oth-
erwise and can be tested.

1 Similar synchronization mechanism has also been observed in the
reproduction of animals [11].
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Figure 5: (left) Fluctuation scaling for the yearly seed count (reproductive activity) of trees from three studies. The fitted
exponents are αT = 0.90, 0.93, 0.97. Points were logarithmically binned and log σ was averaged for better visibility, error bars
show the standard deviation of log σ in the bins. The estimates are close to, but below 1. (right) The average cross-correlation
coefficient between pairs of sites as a function of their distance. Pairs of sites were binned to have an equal number per bin,
error bars show the standard deviation of the cross correlation coefficients in the bins. The red line is a fit with the power law
C(r) ∝ r−0.40, from the fit the error of the exponent is ±0.06.

Simulations of the Satake-Iwasa model already sug-
gested that long-range synchronization can cause αT >
1/2, and the presence of such a tendency is well known for
trees. Koenig and Knops [48] conclude that there exists
a significant positive correlation between the reproduc-
tive activity of trees for distances longer than 1000 kms
(this phenomenon is called masting in the ecology litera-
ture). While Ref. [48] is much more precise and detailed,
we also outline a simple measurement: in Fig. 5(right)
we plot the average C(r) cross-correlation coefficients be-
tween the sites in the complete dataset as a function of
the distance r of the sites. As expected, we find that
cross-correlations decay very slowly with distance, and
the dependence can be fitted approximately by

C(r) ∝ r−0.40, (6)

(although admittedly the fit is not perfect). Sections
3.3.4 and 4.4 will show, that while perfect synchroniza-
tion a’la Satake-Iwasa leads to αT = 1, partial synchro-
nization with the above power-law correlations, implies
αT = 1 − 0.40/2 = 0.8, see Eq. (20). A better quan-
titative agreement would warrant larger datasets which
are not available at present, but there have been some
promising attempts along the same lines [46].

2.3.3. Life sciences

Keeling and Grenfell [53] suggested TFS for the size of
epidemics, and found both empirically and by a simple
Markov chain model of population dynamics that vacci-
nation in general decreases not only the size of epidemics

but also the value of αT. TFS was later found by Wool-
house et al. [54] to also hold between different pathogens.

TFS has been found in the cell-to-cell variation of pro-
tein transcription by Bar-Even et al. [55], albeit with
a crossover and a rather narrow range. In particular, in
the bacterium Saccharomyces cerevisiae the proteins with
higher mean abundance also tend to exhibit greater fluc-
tuations of their level, and the dependence can be fitted
by a power law.

2.3.4. Stock market

In this section we summarize the results of a series
of papers [8, 56, 57, 58]. The work was based on a TAQ
database [59], recording the transactions of the New York
Stock Exchange (NYSE) for the years 2000− 2002. Very
similar results were obtained for the NASDAQ and Chi-
nese markets [60].

We define the activity of stock i as its total traded
value, given as

f∆t
i (t) =

N∆t
i (t)
∑

n=1

V ∆t
i,n (t),

where N∆t
i (t) is the number of transactions of stock i in

the period [t, t+∆t). The individual values of these trans-
actions are denoted by V ∆t

i,n (t). Data were detrended by
the well-known U -shaped daily pattern of traded volumes
[56].

Then the measurement of mean and variance was car-
ried out. The exponent αT shows a strong dependence on
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Figure 6: The dependence of the FS exponent in stock market
data on the size of the time window ∆t. The dependence is
logarithmic in two regimes, with the coefficients γ− ≈ 0.00
for ∆t < 103 sec and γ+ ≈ 0.06 for ∆t > 3 × 104 sec. The
crossover regime corresponds to the time scale of one trading
day. Inset: FS for the fluctuations of the traded value of stocks
for the window sizes ∆t = 10 sec and ∆t = 1 month. Points
were logarithmically binned and log σ was averaged for better
visibility, error bars show the standard deviation of log σ in
the bins.

the window size ∆t, we will return to this result in Sec-
tion 3.3.1. The values range between αT = 0.68 − 0.87,
see Fig. 6.

When ∆t is very small, Ref. [8] shows that the indi-
vidual transactions can be treated as independent events.
Moreover, for the large enough stocks the average size of
transactions (〈Vi〉) can be calculated as a power of the
mean number of transactions as

〈Vi〉 ∝ 〈Ni〉β ,

with β ≈ 0.65 [8]. Equivalents of this property recur
in several FS-related contexts. We will devote Sections
3.3.2-3.3.3 to this observation, which we will call impact
inhomogeneity [8]. We will also show how to map the
value of β onto non-trivial αT values. By that method
[see Eq. (18)] the corresponding αT value should be 0.70,
which is very close to the actual value αT(∆t → 0) =
0.69.

Another general observation [8] is that if αT is a func-
tion of ∆t, then FS can only hold, if this dependence is
logarithmic (cf. Section 3.3.1). For the stock market this
is true in two distinct regimes and those are separated by
a crossover. For ∆t < 103 sec (− sign) and ∆t > 3× 104

sec (+ sign) one finds

αT,±(∆t) = α∗
T,± + γ± log ∆t,

with γ− ≈ 0.00, and γ+ ≈ 0.06. On the other hand, the

Hurst exponent Hi can be defined as [1, 61]

σi(∆t) =
〈[

f∆t
i (t) −

〈
f∆t

i (t)
〉]2
〉1/2

∝ ∆tHi . (7)

For NYSE this equation is found to be valid with

Hi;± = H∗
± + γ± log 〈fi〉 .

Lower indices indicate the same two regimes, and γ± have
the same values as for αT [8].

Subj. System T/E Refs.

N
et

w
o
rk

s Random walk T [7, 31, 33]

Network models T [34, 35]

Highway network T [7, 31]

World Wide Web T [7, 31]

Internet T [7, 31, 32]

P
h
y. Heavy ion collisions E [26, 27, 28]

Cosmic rays E [29, 30]

S
o
c.

/
ec

o
n
. Stock market T [8, 56, 57, 60]

Stock market E this review

Business firm growth rates E [62, 63]

Email traffic T this review

Printing activity T this review
C

l. River flow T [64, 65]

Precipitation T [66]

E
co

lo
g
y
/
p
o
p
.

d
y
n
. Forest reproductive rates T [46, 47]

Satake-Iwasa forest model T [45]

Crop yield T [6]

Animal populations T, E [5, 10, 15, 16]

Diffusion Limited population E [17]

Population growth T [67, 68]

Exponential dispersion models E [18, 21, 69]

Interacting population model T [37]

L
if
e

sc
ie

n
ce

s

Cell numbers E [20]

Protein expression T [55]

Gene expression T [70, 71]

Individual health E [72]

Tumor cells E [21]

Human genome E [22, 23]

Blood flow E [69]

Oncology E [21]

Epidemiology T [53, 54]

Table II: A list of some studies where fluctuation scal-
ing/Taylor’s law was directly applied or implied by a similar
formalism. Groups were assigned by subject areas, Phy. =
Physics, Cl. = Climatology. The column T/E shows the type
of fluctuation scaling, T: temporal, E: ensemble.

2.4. New empirical results

In this section we present previously unpublished re-
sults for fluctuation scaling. Note that temporal vari-
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ances were estimated by the partition function of De-
trended Fluctuation Analysis [61]. This was necessary
in order to (at least partly) remove the nonstationarity
from the datasets. All results, including the values of αT

agree qualitatively with those obtained from a direct cal-
culation variance without detrending, but the accuracy
of the estimation is improved.

2.4.1. Stock market (ensemble averaging)

Fluctuation scaling in stock market data has just been
discussed, but those earlier results pertained temporal
FS, whereas here we will present some new findings on
ensemble FS in the same dataset.

We again consider the (daily) trading activity of stocks.
The size of companies is often measured by the total
value of all their issued stocks, called the company’s cap-
italization (C). We take a fixed time period, the day
03/01/2000 (the results are similar for other days). Then
we group the stocks according their capitalization into 35
logarithmic bins. Finally, we calculate the mean fC and
the standard deviation σC of the activity in every group.
EFS is shown in Fig. 7. The fit gives αE ≈ 0.8 − 0.9,
although with some deviations from scaling.

If the size of the animal population is extensive, it is
justifiable to use the size of the area to parametrize the
ensemble: its mean should be exactly proportional to the
area. To use capitalization as a parametrization for com-
pany size is a different matter. While it is indeed strongly
related to the mean trading activity, there is no one-to-
one correspondence between the two [57]. This is bad
news, because it means that companies of the same cap-
italization can have different expected trading activities.
Thus our ensemble averaging technique is only approxi-
mate.

To circumvent this problem one can apply the follow-
ing trick. The trading activity of companies fluctuates
strongly from day to day, but the expectation value of
the distribution is rather stable over time. So let us now
take an interval t = 1 . . . T and calculate the time av-
erages 〈fi(t)〉 during this period for each stock. Then
for every stock take the single value fi(t = 1) only, and
group the observations according to 〈fi〉. So this is the
same measurement as before with capitalization only in-
stead of Ci, are formed with respect to 〈fi〉 groups (15
logarithmic bins). Then the ensemble mean f and vari-
ance σ can be calculated in each group. The results from
this technique are also indicated in Fig. 7, one can see
a dramatic decrease in the noise level, while the value of
the exponent is approximately preserved, αE = 0.89.

It should be emphasized that we use information about
the temporal average only for the grouping procedure.
The measured αE is a true EFS exponent. Secondly, the
value of αE that we find here is much larger than αT (cf.
Section 2.3.4). Because of the intricate statistical prop-
erties of markets, the two exponents cannot be expected

101 103 105 107 109

103

105

107

109

E = 0.89

 

 

f (USD/min)

E = 1

Stock market (EFS)

Figure 7: Fluctuation scaling considered as an ensemble av-
erage over NYSE stocks for the trading activity. Calcula-
tions were done both by considering the capitalization Ci

(03/01/2000: �), and the monthly average trading activity
〈fi〉 (03/01/2000: #, 01/02/2000: △, 01/03/2000: ▽) as sur-
rogates for size. One can see that using 〈fi〉 for the formation
of groups largely reduces fluctuations, but the exponent re-
mains similar.

to coincide. 2

This example shows that the success of ensemble fluc-
tuation scaling crucially depends on the proper choice of
the size parameter. In the cases where possible, physical
size or area are good choices, because they are known
to be extensive. Otherwise our trick can be applied, but
only if multiple observations are available for every node
and the system is close to stationary.

2.4.2. Human dynamics

The analysis of the records of human dynamics has re-
cently seen growing interest [74, 75, 76]. Here we analyze
two large technological databases of human activity:

(i) Emails from the employees of the company Enron
during the year 2000. We used a filtered variant of
the original dataset posted by the Federal Energy
Regulatory Commission [77]. We defined f∆t

i (t) as
the number of emails sent by the person i during
the interval [t, t + ∆t).

(ii) Data on the printing activity of the largest printer at

2 The same two averaging techniques (fixed time and an ensemble
of stocks versus a fixed stock and multiple times of observation)
were previously introduced for stock market price changes in Ref.
[73].
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the Department of Computing at Imperial College
London [78]. The files include the complete year
2003, we removed weekends, official holidays and
closure times of the computer laboratory (23:00-
7:00). We included 987 users who submitted at least
3 documents during our analysis, except the single
largest user who appeared to have different statisti-
cal properties from the rest. fi(t) is defined as the
number of documents submitted to print by user i
in the time interval [t, t + ∆t). Further details on
the dataset can be found in Ref. [79].

Note that multiple copies of the same email/document
sent/submitted simultaneously were counted as one.

We are going to present these two datasets side by side,
because they have strong similarities. Both show TFS for
window sizes ∆t = 5 . . . 2.8×104 sec. The exponent varies
between αT = 0.52 − 0.72 (email) and αT = 0.57 − 0.83
(printing). Fig. 8 shows the fits for time window sizes
∆t = 10, 10000 sec. We find scaling over about 2.5 orders
of magnitude, and the exponent depends on ∆t. The
αT(∆t) dependence is shown in Fig. 9. Despite the level
of the noise in the data, the dependence appears to be
monotonically increasing, with two regimes separated by
a crossover near ∆t ∼ 4000 sec (email) and ∆t ∼ 1000
sec (printing). The dependence is close to logarithmic,
with the same form as for stock markets (the index −
corresponds the regime below, + above the crossover):

αT,±(∆t) = α∗
T,± + γ± log ∆t,

with γemail
− ≈ 0.04, γemail

+ ≈ 0.13, γprint
− ≈ 0.09, and

γprint
+ ≈ 0.02. Also for the Hurst exponents

Hi;± = H∗
± + γ± log 〈fi〉 .

The coefficient of the logarithms is γemail
− ≈ 0.04, γemail

+ ≈
0.11, γprint

− ≈ 0.07, and γprint
+ ≈ 0.01. The σi(∆t) scaling

plots are shown in Fig. 10, and the Hurst exponents’
dependence on 〈f〉 in Fig. 11.

Finally, notice that for email data αT(∆t) tends to 1/2
with decreasing window size, and the logarithmic ten-
dency appears to saturate. On the other hand, for print-
ing data the logarithmic tendency is markedly present
even for short times. By an extrapolation from the trend
one expects that αT(1 sec) ≈ 0.51. Section 3.2.1 of-
fers an explanation why for very short times one expects
αT = 1/2 in these datasets.

2.4.3. Precipitation

In this section we present a study [66] of the weekly pre-
cipitation records of 22928 weather stations worldwide.
The dataset was obtained from the Global Daily Clima-
tology Network (GDCN), collected by the NOAA Na-
tional Climatic Data Center’s Climate Analysis Branch
[80]. For one station, typically 40 years of data is
available between 1950 and 1990. TFS is found with

αT = 0.77, see Fig. 12. However, there are also some
significant deviations.

Luckily, in this dataset besides the precipitation values
there are other quantities available. For every station,
the geographical latitude (li, measured in degrees) and
the height hi measured from sea level was also given.
The multiple regression

log σi = C + αT log 〈fi〉 + Cl|li| + Chhi + ǫi (8)

with an ǫi error term yields the results C = 0.896 ±
0.002, αT = 0.732 ± 0.002, Cl = −(8.79 ± 0.05) × 10−3

and Ch = (−6 ± 1) × 10−6. All values are significantly
different from zero at the 99.98% confidence level. For the
single parameter fit of TFS (3) R2 = 0.73, while for the
multiple regression (8) R2 = 0.90 which is a substantial
improvement.

The results imply the following. 73% of the variance
in the fit of log σi is explained by TFS alone. An ad-
ditional 17% can be attributed to the geogrephical lati-
tude3 and, in smaller part, to the height above sea level.
The remaining error terms, although we did not find any
appropriate explanatory variable, are still not unsystem-
atic. When plotting ǫi on a map (see Fig. 13) one finds
a strong geographical clustering, with ǫi > 0 typically,
but not exclusively, in continental areas. This system-
atic tendency suggests that a well-defined origin might
exist for such corrections.

As for the value of αT, its origin will be analyzed in
a later study [66]. From preliminary studies it appears
that it is not strongly dependent on the choice of the time
scale ∆t, and always significantly different from both 1/2
and 1.

2.5. Corrections to fluctuation scaling

Similarly to precipitation data, TFS is not perfect for
stock markets either. One can make an assessment here
which is similar to the case of precipitation. There lati-
tude was of the greatest importance, while here it is ex-
pected, that different market sectors will behave in differ-
ent ways. In Fig. 14 we plot σi/ 〈fi〉αT versus 〈fi〉, which
corresponds to the corrections to fluctuation scaling. By
highlighting the alignment of three industrial sectors one
can see that they form clusters, so the deviations are –
to some degree – systematic.

In most real systems fluctuation scaling is found rather
as a general tendency than an exact law. The scaling
plots have some broadening, which can have several ori-
gins. A possible origin of poor fits can be the presence of
crossovers and breaks in the scaling plots [7, 16, 42, 46],

3 Climatic fluctuations are well known to strongly affect ecological
fluctuations [11, 12]. It is an interesting fact that the variability
of animal populations can also depend on latitudinal position
(see Ref. [81] and refs. therein).
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Figure 8: Fluctuation scaling for time resolutions of ∆t = 10 sec and ∆t = 10000 sec. Points were logarithmically binned and
log σ was averaged for better visibility, the error bars represent the standard deviations inside the bins. (left) Results for the
number of sent emails. (right) Results for number of printed documents.
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Figure 9: (left) The dependence of the FS exponent in the Enron email database on the size of the time window ∆t. The
dependence is logarithmic in two regimes, with the coefficients γ− ≈ 0.04 for ∆t < 4000 sec and γ+ ≈ 0.13 for ∆t > 4000 sec.
(right) The dependence of the FS exponent in printing data on the size of the time window ∆t. The dependence is logarithmic
in two regimes, with the coefficients γ− ≈ 0.09 for ∆t < 300 sec and γ+ ≈ 0.02 for ∆t > 1000 sec.

although these can only be seen clearly in very few stud-
ies [26, 64]. In other cases the deviations are attributed
to the quality of data and short sampling intervals as of-
ten suggested in the ecology literature [82]. Still, these
corrections can be large and systematic. In Section 2.4.3
we showed that for precipitation fluctuations geograph-
ical location and height plays a role. Similarly, for the
stock market the market sector matters. These effects
could be uncovered, because of the availability of these
independent quantities for each station/stock. In some
models they can even be calculated analytically, see Sec-
tion 4.1.2.

The fact that scaling is mostly very well preserved sug-

gests that the investigated complex systems have a robust
dynamics characterized by a value of α. The role of the
corrections is not substantial in the formation of fluctu-
ations. There is wide consensus that the exponents are
meaningful, and not significantly distorted by the non-
scaling corrections.

2.6. Summary of observations

In sum, fluctuation scaling appears to be a surprisingly
general concept that can be recognized in virtually any
discipline where the proper data are available. The fluc-
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Figure 10: Scaling plots of log σ−1/2× log ∆t versus log ∆t generated by Detrended Fluctuation Analysis. Users were grouped
by their average activity into three groups (〈f〉 increasing from bottom to top, see plot for ranges) and the curves were averaged
within groups. A horizontal line would correspond to complete the absence of correlations, and the slopes of the linear regimes
are H − 0.5, where H are the typical Hurst exponents of groups. (left) Results for Enron email data. For shorter time windows
∆t < 4000 sec, correlations are weak, and their strength increases slowly with greater 〈f〉. Then after a crossover regime, for
∆t > 4000 sec correlations become stronger, with larger difference between the three groups. (right) Results for printing data.
For shorter time windows ∆t < 300 sec, positive correlations exist, and their strength increases with greater 〈f〉. Then after a
crossover regime, for ∆t > 1000 sec correlations become very weak for all three groups.
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〈f〉 with a coefficient γ− = 0.07. For time windows ∆t > 103 sec (#), correlations are nearly absent, the respective Hurst
exponents are Hi;+ ≈ 0.5 − 0.55, and the logarithmic dependence is weak, with γ+ = 0.01.

tuations of positive additive quantities appear to have
the structure

fluctuations = const. × averageα × (1 + corrections).

There is immense literature on the origins of fluctua-
tions in various systems, ranging from gene networks [83]

through complexity [31] to animal populations [11, 12,
13, 84]. The common point of all these works is that
fluctuations originate from two factors: internal and ex-
ternal. Naturally, the dynamics, the structure, and the
interaction of the nodes vary from case to case. We ex-
pect that, e.g., the stock market trading activity and the
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Figure 12: Fluctuation scaling for the weekly precipitation of
weather stations. The fitted exponent is αT = 0.77. Points
were logarithmically binned and log σ was averaged for better
visibility, the error bars represent the standard deviations in-
side the bins. The inset shows the same plot and the same axis
range, but without binning. One can see that there is a high
number of outliers, due to other, 〈f〉-independent corrections
to FS.

reproduction of trees is very different. The discovery of
FS as a common pattern can be a good start to point out
further analogies and to build a broader picture.

3. A GENERAL FORMALISM

In the following we will focus on the temporal variant

of FS. In many cases the results continue to apply by
simply dropping the time index t and averaging over an
ensemble of systems.

The previous section reviewed ample evidence that FS
emerges in a very broad range of subjects. Here we at-
tempt to describe many of these by the same formal-
ism. In the following we will assume that the systems
are stationary. When considering a node i, its activity fi

will always be decomposed as a sum. In some cases this
means summation over the nodes internal constituents,
as for forests where reproductive activity was the total
of that for all trees. In other cases the nodes themselves
are simple, and the signal is the sum of events at the
nodes, like the passing of cars at counting stations. If in
the time interval [t, t + ∆t) there are N∆t

i (t) such con-
stituents/events, and the activity of the n’th is V ∆t

i,n (t),
then

f∆t
i (t) =

N∆t
i (t)
∑

n=1

V ∆t
i,n (t). (1)

These V ’s do not necessarily have to be independent

[8, 46], but we will assume that their (unconditional) dis-
tribution does not depend on n. We will omit the index
∆t, where appropriate.

3.1. The components of fluctuations

Throughout this section we will analyze the fluctua-
tions of quantities of the form (1), as measured by the
standard deviation/variance. Thus, it is important that
there exists a simple analytical expression [58] for

σ2
i =

〈

[fi(t) − 〈fi(t)〉]2
〉

.

Appendix A gives a proof that

σ2
i = Σ2

V i

〈

N2HV i

i

〉

+ Σ2
Ni 〈Vi〉2 , (9)

where 〈Vi〉 and Σ2
V i are the mean and the variance of

Vi,n. Similarly, 〈Ni〉 and Σ2
Ni are the mean and variance

of Ni. We also introduced the Hurst exponent HV i of the
constituents, which is defined as

Σ2
V i(N) =

〈[
N∑

n=1

Vi,n −
〈

N∑

n=1

Vi,n

〉]2〉

∝ N2HV i (10)

for any t and ∆t. If for a fixed i and t all Vi,n(t) are
uncorrelated, then HV = 1/2, while if they are long range
correlated HV > 1/2 [61, 85]. 4

3.2. ”Universality” classes

In this formalism it is relatively easy to show that there
exist two important classes of systems, one with α = 1/2
and one with α = 1. The existence of such classes was
pointed out, for example, by Anderson et al. [16] and
later by Menezes and Barabási [7].

These are not universality classes, and α is not a uni-
versal exponent in the usual sense of statistical physics
[24], but rather simple limiting cases. As we have seen so
far, many empirical systems do not belong to either class.
Also, we will now show that both values can arise from
several types of dynamics. In order to make FS a truly
useful tool in the analysis of empirical data, we must de-
velop a classification scheme for how different types of
dynamics can be mapped onto α. Our current under-
standing of the general results is outlined in this section.

4 The Hurst exponent is only related to correlations in this simple
fashion because the distribution of Vi,n(t) does not depend on n
[86].
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Figure 13: The error terms ǫi of the multiple regression (8), which represent the residuals of log σ after correcting for average
precipitation, geographical latitude and height above sea level. ǫi accounts for 10% of the variance in log σi, and it is strongly
clustered geographically suggesting the existence of a well-defined underlying mechanism.
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Figure 14: log[σi/ 〈fi〉
αT ] plotted versus log 〈fi〉 for the 10-second resolution traded value data of stocks. The data points were

not binned or altered in any way, which makes visible the deviations from the original scaling law, which would correspond
to a horizontal line. The lighter points indicate all stocks, while boxes (2) highlight the distribution of points for the three
indicated economic sectors. The great degree of clustering both horizontally and vertically. Clustering along the log 〈f〉 axis
only suggests that the sector has some typical trading activity. Systematic corrections to fluctuation scaling are indicated by
clustering along the log σ/ 〈f〉αT axis. If a sector is clustered in the lower/higher half of the dataset, it means that its trading
activity has typically lower/higher fluctuations than the market average. The presence of such sector dependent clustering
suggests that the corrections to fluctuation scaling are not purely random.

3.2.1. The case α = 1/2

There are several scenarios that can give rise to α =
1/2, we will now present two. The arguments will be
given in the language of time averages, but they can
be generalized to ensemble averages in a straightforward
way.

1) Let us assume that every node i consists of a fixed

number Ni(t) = Ni of constituents, each with a
signal Vi,n(t) which is i.i.d. for all i, n and t, with
the same mean 〈V 〉 and variance Σ2

V . From Eq. (9)
it is trivial that here σ2

i = NiΣ
2
V . Because of the

linearity of the mean, 〈fi〉 = Ni 〈V 〉 , so

σ2
i =

Σ2
V

〈V 〉 〈fi〉 ,

and hence α = 1/2. Of course in this simple case
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one can say more, because the central limit theorem

[87] is applicable:

∑Ni

n=1 Vi,n(t) − Ni 〈V 〉√
NiΣV

→ Gi(t), (11)

where Gi(t) are i.i.d. standard Gaussians and ”→”
means convergence in distribution for Ni → ∞.

Exactly the same equation can be rewritten to more
resemble fluctuation scaling:

fi(t) − 〈fi〉
K 〈fi〉α

→ Gi(t). (12)

The power α = 1/2 is exactly the power in FS, and

K = ΣV 〈V 〉−1/2. The conceptual difference is only
that since we know that 〈fi〉 = Ni 〈V 〉, we can use

〈fi〉 〈V 〉−1
as a surrogate variable for Ni. This is

very useful, when we only have the time series of
fi(t) available but not N , since the limit can be
switched to 〈f〉 → ∞ (cf. Section 5.2).

1’) Let us consider an example for scenario 1): a sys-
tem, where Vi,n(t) can only be 1 with probability p
and 0 with probability 1 − p. Scenario 1) still ap-
plies because V ’s are i.i.d., so α = 1/2. This binary
distribution can be instructive, as one can think of
Vi,n(t) as independent indicator variables. For ex-
ample let us take a volume S of ideal gas within
a large container. Let the whole system contain
N gas atoms, and Vi,n = 1 if the n’th atom is in
the container, while Vi,n = 0 if it is not. The ideal
gas is homogeneous and the atoms are independent,
every atom having a probability p ∝ S of being in
the small container. From here, one can apply the
above argument to show that for various containers
i of different size

σS ∝ 〈fS〉1/2 .

These are the well-known square-root type fluctu-
ations of equilibrium statistical physics (see, e.g.,
Section XII of Ref. [25]). Similar arguments were
suggested for the number of animals in an area: If
the motion of individuals were independent (gas-
like), then their spatial density fluctuations should
follow α = 1/2 [88].

1”) The example of the ideal gas can be given in the
language of ensemble averages as well. Simply we
take a large number of containers of the same size
S and calculate the mean fS and standard devia-
tion σS of atom counts between these containers.
Then we vary the container size, and we recover an
analogous relationship:

σS ∝ fS
1/2

.

Of course, this was expected, because the system
is ergodic, so temporal and ensemble averages are
equal.

2) For an even simpler mechanism let us recall the
findings of Section 2.4.2. We found that for very
short times (∆t ∼ 1 sec) the number of sent
emails/printed documents follow TFS with αT =
1/2. It is highly unlikely that someone will send
several different emails/print several different doc-
uments in the same second (duplicates of the same
email to multiple recipients were excluded). Thus
fi(t) = 0 or 1, and so fi(t) = f2

i (t). Remember
that this is very different from the previous exam-
ple, where fi(t) was allowed to have any value, and
only Vi,n(t)’s were constrained to 0 or 1.

In the data the number of events per second was
very low, generally 〈fi〉 < 4 × 10−3 sec−1. The
standard deviation is then

σ2
i =

〈
f2

i

〉
− 〈fi〉2 = 〈fi〉 − 〈fi〉2 ≈ 〈fi〉 , (13)

so α = 1/2. The same argument holds for the num-
ber of trades per second in the stock market [8].

The meaning of this scenario 2) in summary: We
are examining the system on such a short time scale
that no two events happen in the same time win-
dow. Then, the FS exponent tells us nothing about
the dynamics of the system, because α = 1/2 is au-
tomatically true.

3.2.2. The case α = 1

The value α = 1 can come about by a variety of sce-
narios, we will present two. While 1) is only valid for
TFS, 2) can be readily generalized for EFS as well.

1) It was possible to obtain α = 1/2 by sums of in-

dependent V ’s. In the other extreme case, if ev-
ery node i had a fixed number of identical and com-

pletely synchronized constituents, i.e., Ni(t) = Ni and
Vi,n(t) ≡ Vi(t) Eq. (1) simplifies to

fi(t) =

Ni∑

n=1

Vi,n(t) = NiVi(t).

Then 〈fi(t)〉 = Ni 〈Vi(t)〉, and σi = NiΣV i.

σi =
ΣV i

〈Vi〉
〈fi〉 ∝ 〈fi〉α , (14)

with α = 1. The last proportionality only holds if the
ratio ΣV i/〈Vi〉 is the same for any i, for example when
the distribution of Vi is independent of i.5

5 If the dependence is present but weak, then it may cause correc-
tions to FS, but scaling should still hold approximately.
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1’) How is such an argument of any use? The study of
Cho et al. [89] reports experimental data on samples
of yeast, in which cells were artifically prepared to
have almost perfectly synchronized cell cycles. The
measured signal [fi(t)] is the hourly expression level
of various genes i in a sample. If all cells of yeast
contribute in the same way to the measured expression
level, and they are synchronized, then the value αT =
1 is simply an indicator of such a synchrony. Thus FS
probably tells us nothing about the dynamics of gene
transcription, and the exponent is simply due to the
sample preparation.

Nacher et al. [70] propose a stochastic differential
equation model that predicts the same exponent αT =
1 for this dataset (αT = 1 is confirmed by Ziković et
al. [71]). They argue that self-affine temporal corre-
lations are the origin of such a value. Section 3.3.1
will show that self-affine temporal correlations do not
contribute to αT in this way. Instead, our above ex-
planation is simpler, and it suggests that the dataset
cannot be used in favor of any proposed model based
on the value of αT.

1”) Real systems are often not closed, but subject to out-
side forces. In certain cases this driving can be so
strong that it can overwhelm the internal dynamics.
If the internal structure of the systems becomes ir-
relevant, this must also have an effect on FS. There
have been a number of studies discussing how fluc-
tuations in complex systems are formed as the sum
of internally generated and externally imposed factors
[11, 12, 13, 83, 84]. Anderson et al. [16] and Menezes
and Barabási [7, 31] suggested that αT = 1 can arise
when the external driving force imposes strong fluctu-
ations in either Vi(t) or Ni(t) (cf. Ref. [12]).

When all Vi,n(t) (the signals of every constituent at
every node) become synchronized, then we are back
at scenario 1): α = 1, because fi(t)/ 〈fi〉 = V (t)/ 〈V 〉
which has a universal, i-independent distribution.

It is also possible that an external force W (t) affects
the number of constituents in the elements so strongly
that the fluctuations of Ni(t) become proportional
only to this force. In this case Ni(t) = AiW (t), where
Ai are node-dependent constants. One expects that
generally 〈fi(t)〉 = Ai 〈W (t)〉 〈Vi〉, whereas

σ2
i = Σ2

Ni 〈Vi〉2 + Σ2
V i 〈N〉 = A2

i Σ
2
W 〈Vi〉 + Σ2

V iAi 〈W 〉 .

If fluctuations in W are so large that 〈W 〉 ≪ Σ2
W , then

only the first term remains. After some algebraic steps

σ2
i ≈ Σ2

W

〈W 〉2 〈Vi〉
〈fi〉2 ∝ 〈fi〉2αT ,

with αT = 1. The last proportionality is true if the
distribution of Vi,n does not depend strongly on i.

2) α = 1 can be a sign of a universal distribution of
fi(t)/ 〈fi〉, which only varies by a constant multiplica-
tive factor throughout nodes. If this is true, then

fi(t) can be decomposed into this factor Fi, and the
universal random variable Vi(t), which are identically
distributed for all i. Naturally 〈fi〉 = Fi 〈V 〉, and

σ2
i = F 2

i Σ2
V , and σi = ΣV 〈V 〉−1 〈fi〉.

3.3. Other values of α

It has been observed that many real systems obey FS
with α values that significantly differ from both 1/2 and
1. In this section we summarize the current knowledge
of general mechanisms that can give rise to intermediate
values.

3.3.1. The dependence of α on the time resolution ∆t

First of all, α can depend on the size of the time win-
dow used for its measurement. This phenomenological
picture can be used to understand the results of Section
2.3.4 for stock market trading, and Section 2.4.2 for hu-
man activity.

Let us assume, that the activity time series are long
time correlated with Hurst exponents Hi that are allowed
to depend on the node i. The Hurst exponent of the time
series f∆t

i (t) was previously defined as

σi(∆t) =
〈[

f∆t
i (t) −

〈
f∆t

i (t)
〉]2
〉1/2

∝ ∆tHi . (7)

This definition is almost exactly the same as Eq. (10)
for HV , the only difference being that now instead of the
N number of constituents we consider the time window
size ∆t as the scaling variable. TFS deals with how the
variance scales when one moves to stronger (larger 〈f〉)
signals:

σi ∝ 〈fi〉α . (3)

Eq. (7) takes an alternative point of view and suggests
that for a fixed signal, in the presence of long-range tem-
poral correlations, the variance can grow anomalously
also by changing the time window.

Following Ref. [8], from Eqs. (7) and (3), it is easy
to see that the roles of 〈fi〉 and ∆t are analogous. Since
the left hand sides are the same, one can write a third
proportionality between the right hand sides:

∆tHi ∝ 〈fi〉α(∆t)
.

After taking logarithm on both sides, and differentiating
by ∂2/∂(log ∆t)∂(log 〈fi〉), one finds that asymptotically

dHi

d(log 〈fi〉)
∼ dα(∆t)

d(log ∆t)
∼ γ. (15)

This means that both partial derivatives have the same
constant value, which we will denote by γ.

Eisler and Kertész [8] outline three scenarios for this
equality to hold:
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(I) In systems, where γ = 0, the exponent α, is inde-
pendent of window size, and the degree of temporal
correlations (H) is the same at all nodes.

(II) When γ > 0, α(∆t) depends on ∆t logarithmically:
α(∆t) = α∗+γ1 log ∆t. The Hurst exponent of the
node also depends on 〈f〉 logarithmically with the
same prefactor: Hi = H∗ + γ log 〈fi〉.

(III) It is possible that Eq. (15) only holds piecewise,
for certain ranges in ∆t. Two regimes are then sep-
arated by a crossover between two distinct values
γ±, and nodes will have separate Hurst exponents
H−(i) and H+(i) in the two regimes.

Case (III) was shown for the stock market and human
dynamics in Section 2.3.

3.3.2. Impact inhomogeneity

Any value of α can easily arise without dependence on
the time window. To better understand the reason how,
consider three toy systems with the following elements.

(i) Let us take a fair coin with 0 written on one side and
1 on the other, this will be our group i = 1. Then
take two such coins for group i = 2, three for i = 3,
etc. In every time step we flip all coins in every
group, and let fi equal the sum of the numbers we
flipped in element i. Naturally 〈fi〉 ∝ i and, if all
coins are independent, σi ∝ i1/2. Thus, for such a
case α = 1/2.

(ii) Now let us take another fair coin with 0 written on
one side and 1 on the other, this will be our element
i = 1. For i = 2, we again take only one coin with
sides 0 and 2. For any i, there will be a single coin
with sides 0 and i. Trivially 〈fi〉 ∝ i, but also σi ∝ i.
So this time α = 1.

(iii) In our final example, let us mix the above two. For
the i’th group there are i coins, each having a side
with 0 and a side with i. Then 〈fi〉 ∝ i2, whereas
σi ∝ i1/2 × i. We have just constructed a case for
α = 3/4.

One can unify these examples by introducing impact

inhomogeneity. One can write the contribution (impact)
of the constituents at a node i as

Vi,n(t) = 〈Vi,n〉 · Xi,n(t), (16)

all Xn,i(t) are i.i.d. with unit mean. We then allow 〈Vi,n〉
to depend on 〈Ni〉 as a power law between nodes [33, 68]:

〈Vi,n〉 ∝ 〈Ni〉β . (17)

According to Eq. (9) fluctuations can be calculated as

σ2
i = Σ2

V i 〈Ni〉 + Σ2
Ni 〈Vi〉2 =

Σ2
X 〈Vi〉2 〈Ni〉 + 〈Ni〉 〈Vi〉2 ∝ 〈fi〉2α

,

where Σ2
X =

〈
X2
〉
− 〈X〉2, and

α =
1

2

(

1 +
β

β + 1

)

, (18)

where we introduced the new parameter β.
As a quick check, the three toy models correspond to

β = 0, α = 1/2 (all coins 0 or 1); β = 1, α = 3/4
(the coins value proportional to their number) and β →
∞, α = 1 (only one coin with growing value). There is
always some β ≥ 0 that allows us to reproduce a given
value α ∈ [1/2, 1), whereas the range β < 0 covers all
possibilities of α < 1/2 and α > 1.

3.3.3. Examples of impact inhomogeneity

The ecology literature has documented [90, 91] that
empirically there is a strong positive correlation between
the typical size of subpopulations6 (〈V 〉) and the number
of subpopulations per unit area (〈N〉) or the total pop-
ulation per unit area7 (〈f〉). The conjecture that these
quantities might behave as powers of each other as in Eq.
(17) was proposed by Keitt et al. [68], both across species
and for individual subpopulations of the same species.

Kendal makes a similar suggestion, and shows that
it generates non-trivial exponents in EFS for ecological
populations [18] and the heterogeneity of blood flow in
organs [69]. In fact he does not point out the general
mechanism, but instead refers to non-trivial EFS expo-
nents as the property of a class of models, which entail
impact inhomogeneity. Here we will omit most of the
formalism; a proof that Kendal’s approach has impact
inhomogeneity can be found in Appendix B.

Let us take the case of animal populations as the exam-
ple. Kendal proposes that EFS holds with an exponent
1/2 < α < 1 if the population of an area can be described
by the so-called Tweedie exponential dispersion models
[92]. These assume that (i) an area i contains a Poisson
distributed number of animal clusters (Ni), (ii) the size of
individual clusters (Vi,n) is i.i.d. gamma distributed, (iii)
and there is a power law relationship between the means
of these two quantities. Of course, (iii) is the same as Eq.
(17), along with all of its consequences.

As for blood flow [69], it is measured by the entrapment
of radioactive microspheres in capillaries. In a fixed mass
of tissue, the number of entrapment sites N is assumed
to be Poisson distributed, while the blood flow V of the
sites is taken as gamma distributed, along the same lines
and with the same conclusions as above.

Finally, Section 2.3.4 suggested impact inhomogene-
ity also as the origin of non-trivial FS exponents for the
traded value on stock markets.

6 This is often called local abundance.
7 regional abundance
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3.3.4. Constituent correlations

There exists a further mechanism to produce any value
1/2 ≤ α ≤ 1, without considering the scaling property
of impacts. The total output of node i is given by the
equation

fi(t) =

Ni∑

i=1

Vi,n(t). (1)

We also fix Ni as time independent. If we assume that
the unconditional distribution of V ’s is independent from
Ni, and also from n, then one can denote the expectation
value 〈V 〉 = 〈Vi,n(t)〉.

The central idea is the introduction of correlations be-

tween constituents, i.e., variables with different n. Let
us assume for simplicity that the elements are situated
on a one-dimensional lattice, and their activity is long-
range correlated in space, so that the correlation function
decays as a power law,

C(∆n) ∝ 〈Vi,nVi,n+∆n〉 − 〈Vi,n〉2 ∝ ∆n2HV −2. (19)

HV is the same Hurst exponent, as defined in Eq. (10).
Then, positively correlated patterns display HV > 1/2,
for uncorrelated (or short range correlated) patterns
HV = 1/2, and for anticorrelated (antipersistent) pat-
terns HV < 1/2. 8

It follows from Eq. (9) that the fluctuation of the com-
bined activity of all constituents is:

σ2
i = Σ2

V N2HV

i ∝ 〈fi〉α ,

where

α = HV . (20)

This idea was (to our knowledge) first presented by West
[93], and demonstrated on surrogate data sets, but it was
not applied directly to any new problem. The role of
spatial correlations in the formation of FS in the context
of ecology was also suggested by Colman et al. [94] and
Ballantyne and Kerkhoff [46] more recently. The idea is
confirmed by simulations, see Section 4.4.

4. MODELS

In this section, we will discuss some models that can be
used to understand basic facts about fluctuation scaling,
how it arises and what its limitations are.

8 We need to assume that Vi,n is stationary as a function of n.
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Figure 15: Fluctuation scaling for the random walker model
on the Barabási-Albert network with parameters M = 20000,
W = 100, smax = 100 and T = 10000. The fitted exponent
is αT = 1/2 with a little deviation for very small 〈f〉. Points
were logarithmically binned and log σ was averaged for bet-
ter visibility, the error bars represent the standard deviations
inside the bins. The inset shows the values of the effective
exponents as one increases the fluctuations (ΣW ) in the num-
ber of walkers. There is a clear crossover from αT = 1/2 to
αT = 1.

4.1. Random walks on complex networks

4.1.1. The model

It was proposed by Menezes and Barabási [7] that ran-
dom walks can generate TFS in the following way. Let
us take a scale free Barabási-Albert network9 of M nodes
[95]. We distribute W independent random walkers (to-
kens) randomly to the nodes. Then, in every time step
these jump from their current node to one of their neigh-
bors randomly. The process is repeated for s = 1 . . . smax

steps, then it is halted and the total number of visits to
each node i is counted. This number defines fi(t = 1).
Then the deposition and the walk is repeated, up to T
times, giving the time series fi(t). We ran simulations
with the parameters M = 20000, W = 100, smax = 100
and T = 10000.

One finds that TFS holds with an exponent αT = 1/2,
see Fig. 15. This value is the same as what arises from
sums of independent random variables, so the central
limit theorem is a possible origin of FS for random walks.
The next part presents an analytical calculation that con-

9 The particular topology is irrelevant from the point of view of
αT. The network only has to be connected and the nodes should
have a wide range of degrees.
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firms this conjecture.

4.1.2. Fluctuation scaling and corrections

The model can be solved based on a master-equation
approach [33, 96]. Here we will use elementary probabil-
ity theory instead. The number of walkers on node i can
be calculated from their distribution in the previous time
step as:

Ni(s + 1) =
∑

j∈Ki

Nj(s)∑

n=1

δn(j → i; s), (21)

where δn(j → i; s) is a variable that is 1 if in step s the
n’th token was at node j and then it jumped to node i
(happens with probability 1/kj to all neighbors of node
i), and 0 otherwise. ki is the degree of node i, Ki is the
set of neighbors of node i, and Nj(s = 0) corresponds to
the initial condition.

Calculations in Appendix C show that for such a model

〈fi〉 = smax 〈Ni〉 = ki
smaxW
∑

j kj
= ρki, (22)

where ρ = smaxW/
∑

j kj . As the W number of walkers
is multiplied by the smax and divided by the total num-
ber of edges, ρ can be understood as the mean number
of walkers passing any edge during the smax time steps.
Furthermore,

σ2
i =

∑

j∈Ki

σ2
j

k2
j

+ 〈fi〉 . (23)

The first term on the right hand side is a sum over ki

nodes, but every term is multiplied by 1/k2
j , thus they

can be neglected to a first order. To a leading order

σ2
i = 〈fi〉 ,

thus we find FS with αT = 1/2.
The term with the sum presents corrections to the scal-

ing law. Eqs. (22) and (23) could be solved numerically,
but to get a qualitative understanding of these correc-
tions it is enough to make a self-consistent solution up
to the first non-trivial order. This can be done by taking
σ2

j = 〈fj〉 = ρkj , and substituting it back into the right
hand side of (23), to find

σ2
i =

∑

j∈Ki

ρ

kj
+ ρki = ρki

︸︷︷︸

〈fi〉

(

1 + a

〈
1

kNi

〉)

, (24)

where 〈1/kNi〉 is the average inverse neighbor degree of
node i and a = 1. Simulation results supporting this
argument are shown in Fig. 16. We find that this formula
accounts for a large part of the corrections to FS, only
the coefficient is different, a ≈ 3.6.

The qualitative picture from the above three equations
is the following. For simplicity let us consider ρ = 1,
when the average number of tokens at a node equals
its degree. Thus on average in every step every node
transmits one token on each of its edges to its neighbors.
Consequently every node receives typically one token on
each edge, so again it will have tokens equal to its degree.
These tokens arrive independently, thus the variance is
proportional to their number, which implies αT = 1/2.
The corrections in Eq. (24) imply that nodes with rela-
tively higher degree neighbors (smaller 〈1/kNi〉) exhibit
lower fluctuations10. This is because the number of to-
kens at a neighboring site with smaller degree is smaller,
and thus can have larger relative fluctuations. These fluc-
tuations then affect our site via a stronger variation in
incoming tokens.

This argument is important, because it tells us that for
random walks fluctuation scaling is only approximately

true. The local topology of the network can give signif-
icant corrections which cause a broadening in the scal-
ing plots and which are not simply due to measurement
noise. According to Eq. (24) the size of the correction
term depends on the neighborhood of the node. Because
〈fi〉 ∝ ki, very large flux nodes also have many neigh-
bors. In an uncorrelated network the term 〈1/kNi〉 will
converge to a constant value with growing ki, its node
dependence (and thus the broadening it causes) is di-
minished.

4.1.3. The role of node-node interactions and a connection
with surface growth

Previously we have shown that 〈fi〉 = ρki, where ρ is
the average number of tokens passing any edge during a
time step. The fluctuations of the number of visits to
node i come from two sources: (i) the number of such
initial tokens at the neighbors, (ii) and how many of the
tokens at its neighbors continue their walk to node i in
the next step. The number of tokens at a node is cou-
pled with the state of its neighbors in the previous step.
This effective interaction between neighboring nodes is
the origin of the corrections to FS in Eq. (24). To prove
this, Menezes and Barabási suggest a mean-field model
[7] which eliminates this interaction as follows.

Instead of a direct contact between nodes, let us com-
pletely disconnect the network, and connect every node
with its original number of edges to a reservoir. In every
step (s = 1 . . . S as in the original model) the reservoir
sends W tokens, their destination is chosen randomly be-
tween the edges. These tokens return to the reservoir in
the next step, but simultaneously W new tokens are sent
out, etc. It is trivial that in this case fluctuations of the

10 The degree dependence of this correction is related to the assor-
tativity of the network [97].
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Figure 16: (left) Fluctuation scaling for the random walker model with parameters M = 20000, W = 100, smax = 100 and
T = 10000. The same as Fig. 15, only without the binning procedure. The scaling law with αT = 1/2 holds on average, but
there is some systematic broadening. The inset shows 10 randomly selected points from the indicated area, with the average
inverse neighbor degree 〈1/kNi〉 indicated for each node. There is a general increasing tendency in 〈1/kNi〉 from bottom to top.

(right) The value of σ/ 〈f〉1/2 plotted versus the average inverse neighbor degree 〈1/kNi〉 of the node. There is an approximately
linear relationship of the form σ2/ 〈f〉 ∼ 1 + 3.6 〈1/kNi〉.

type (ii) are absent: all nodes are neighbors of the reser-
voir only, which emits the exact same number of tokens
every time. Moreover, the distribution of fi(t) will be
Poissonian with mean and variance ρki. Thus exactly

σi = 〈fi〉1/2
=
√

ρki, (25)

i.e., αT = 1/2 without any corrections. Moreover, both
the network topology and the ”randomness” of the walk
was completely eliminated. As suggested by Menezes and
Barabási [7], the remaining model is equivalent to a sur-
face growth problem. Consider a finite one-dimensional
lattice with

∑

i ki sites. At every time step W tokens
are deposited on the surface randomly. The Hurst expo-
nent of the resulting surface is equivalent to the αT of
the non-interacting model [cf. Eq. (20)].

This example suggests that FS in the random walker

model is a mean-field property. The interaction between
the nodes is only responsible for higher order corrections
that do not change the scaling exponent in general. Most
models in the literature are either non-interacting in this
sense [20, 45, 53] or this interaction is not relevant [7, 33].
At most, complex dynamics is limited to the structure
within [37] the nodes, but not between the nodes. There
exist a few studies of transport models on complex net-
works where the interaction between the nodes becomes
relevant. In these models fluctuation scaling breaks down
and topology-dependent crossovers appear due to conges-
tion [35] or the presence of multiplicative noise [34].

4.1.4. The role of external driving

Finally, let us briefly remark on the behavior of the
model in the presence of external driving. One can allow
the number W of walkers to fluctuate between the times
t as

W (t) = 〈W 〉 + ΣW × G(t).

We chose G(t) as i.i.d. standard Gaussians, but the find-
ings are largely independent of the shape of the distribu-
tion. If at any time W (t) became less than zero, we set
it W (t) = 0. If we restrict ourselves to the mean field
solution, then at every node [7]

σ2
i = 〈fi〉 +

[
ΣW

〈W 〉

]2

〈fi〉2 . (26)

This result implies that when ΣW > 0, there is a
crossover from αT = 1/2 to αT = 1 around the node

strength 〈f〉 ∼ 〈W 〉2 /Σ2
W .

The process was simulated with the other parameters
set as before. With the increase of ΣW the best fit to Eq.
(3) yields intermediate effective exponents between 1/2
and 1, see the inset of Fig. 15. However, these are not
”true” exponents, only signatures of the crossover.

4.1.5. Impact inhomogeneity

The random walker model can be modified [33] to en-
tail Eq. (17). This means that when a walker steps



21

101 102 103 104

0.4

0.6

0.8

1.0
Random walk (TFS)

T

W/<W>

values of 
 2.0
 1.0
 0.5
 0.2
 0.0
 -0.2

Figure 17: Fluctuation scaling for the random walker model
with inhomogeneous impact, parameters M = 20000, W =
100, smax = 100, T = 10000 and various values of β. The
case β = 0 is the same curve as in the inset of Fig. 15.
The αT(ΣW → 0) limit is well described by Eq. (18). For
ΣW ≫ 〈W 〉 every system displays a crossover to αT = 1.

onto a site with typically more visitations, it generates a
higher impact. Since the number of visits is proportional
to the degree of the node (〈Ni〉 ∝ ki), in order to have

the impact inhomogeneity relationship 〈Vi〉 ∝ 〈Ni〉β , one
can simply introduce that for a token visiting a node of

degree ki, the impact should be 〈Vi〉 = kβ
i . Simulation

results perfectly conform with the theory, αT(ΣW = 0)
depends on β as expected from Eq. (18). The crossover
persists to αT = 1 when one introduces a large variation
in the number of tokens, see Fig. 17.

4.2. Critical fluctuations and finite size scaling

The mechanism how (spatial) correlations produce
non-trivial values of α draws on some fundamental knowl-
edge in statistical physics. Critical systems are known
to exhibit anomalous fluctuations due to the presence
of strong, but non-trivial correlations. These originate
from the interactions of the internal constituents as for
e.g. Ising spins.

It is instructive to consider the simple ferromagnetic
case, like the nearest-neighbor Ising model [24] on a d
dimensional square lattice. Because this model does not
a priori have dynamics, its analysis can be understood
in the language of ensemble averages.

The number of spins is N = Ld, where L is the linear
size of the lattice. At the critical point local magnetiza-
tion has a diverging correlation length, and the correla-

tion function becomes of the power law form

C(r) ∝ 1

rd−2+η
. (27)

The squared fluctuations of total magnetization [σ2(ML)]
are known to be proportional to the susceptibility χ, and
for finite systems both quantities diverge at the critical
point as

σ2(ML) ∝ χ ∝ Ld+γ/ν. (28)

This is one of the well known results of finite size scaling
(FSS) [98].

The susceptibility can be calculated as the integral of
the correlation function:

χ =
N

kBT

∫

ddrC(r) ∝ N

∫ L ddr

rd−2+η
∝ Ld+2−η. (29)

It is well known that the exponents in Eqs. (28) and
(29) are related, γ/ν = 2 − η (Fisher’s law [24]). At the
critical point, due to the interactions between the spins,
the susceptibility becomes super-extensive, i.e. it grows
faster than ∝ Ld, a typical sign of criticality.

Let us now consider an ensemble of finite Ising systems
at the critical temperature with zero external field and
with various linear sizes, and let the signal be the NL,↑

number of ”up” spins. Of course the total number of up
and down spins is constant:

NL,↑ + NL,↓ = Ld,

and their difference gives the magnetization as

ML = NL,↑ − NL,↓.

With the notation o(Lp)/Lp → 0, at the critical point

NL,↑ = Ld/2 + o(Ld).

On the other hand, the fluctuations of M and N↑ are
proportional, because

ML = 2NL,↑ − Ld,

and so

σ(NL,↑)
2

= σ(ML)
2
/2 ∝ Ld+2−η + o(Ld+2−η).

Consequently, to a leading order, there exists EFS be-
tween the fluctuations and the mean of the number of up
spins:

σ(NL,↑)
2 ∝ NL,↑

2αE

with

αE =
1

2
+

2 − η

2d
=

1

2
+

γ/ν

2d
. (30)

The above are true up to the upper critical dimension,
which is dc = 4 for the Ising model [98]. The mean-field
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results can be recovered by substituting the correspond-
ing values: d = dc = 4, γMF = 1, νMF = 1/2, ηMF = 0.
Finally αE,MF = 3/4, in agreement with the direct math-
ematical proof of Ellis and Newman [99]. Moreover, at
the critical point the susceptibility is superextensive, so χ
must grow faster than Ld. This means that in Eq. (29)
d + 2 − η > d, and thus η < 2. On the other hand if
η is non-negative, then from the constraints 0 ≤ η < 2
and d ≥ 1 it immediately follows that 1/2 ≤ αE < 1.
This range is also valid for the analogous behavior of all
n-vector models.

This result is two-fold, depending on how we look at
it:

(i) The exponent αE resembles the finite-size scaling
exponent of fluctuations/susceptibility. Thus in this
case fluctuation scaling essentially finite-size scal-

ing. The difference is that the FS calculation can
be done even when there is no data available about
”system size”. Instead, because N↑ is a positive ex-
tensive quantity, we know that its expectation value
will be proportional to the system size, and thus it
can act as a surrogate variable for Ld. An anoma-
lous value of the FS exponent can be related to criti-
cal behavior, although – as previous sections suggest
– not necessarily. We will discuss this question in
detail in Section 4.3.

(ii) The finding that when the constituents are long-
range correlated gives rise to anomalous values of
α, leaves us with a recipe how to construct simple
models that display 1/2 < α < 1. The simplest
scenario is described in detail in Sections 3.3.4 and
4.4.

What is the case with N↑ off the critical point? In the
paramagnetic phase the mean number of up spins is ex-
actly N/2, while the fluctuations are of order N1/2, thus
αE = 1/2. The ferromagnetic case is a more delicate
issue, because the infinite system is not ergodic: spon-
taneous magnetization is symmetry breaking. For finite
systems with a local (e.g. Glauber) dynamics it takes a
finite (but very long) time for magnetization to change
direction. The phenomenon is more easily interpreted via
an (unrestricted) ensemble of equilibrium ferromagnets.
Here still f = N/2, because configurations magnetized
up and down average out. The fluctuations on the other
hand are macroscopic, σL ∝ 2|M | ∝ Ld. Thus αE = 1.
In sum, the paramagnet-ferromagnet phase transition is
signaled by FS as an abrupt change between the two
universality classes (similarly to the Satake-Iwasa forest
model [44, 45]). At the critical point one finds interme-
diate exponents that can be calculated from the usual
critical exponents. However, it is of fundamental impor-
tance that the anomalous FS is not observed in the order
parameter M . Instead, it is observed in an extensive
quantity, and only whose fluctuations reflect the anoma-
lous fluctuations of the order parameter. FS is there in
M , but with a trivial exponent: From finite size scaling

M ∝ Ld−β/ν. This, combined with Eq. (29) leads to

σ(ML) ∝ M (d+γ/ν)/[2(d−β/ν)]. Due to the hyperscaling
relation γ + 2β = dν this means αE = 1.

The critical point is a very special state of a system,
while fluctuation scaling with 1/2 < α < 1 occurs very
often. To make criticality a viable explanation for these
non-trivial values of α it is important to notice that
certain types of dynamics under strong external driving
can self-organize to their critical state without the fine-
tuning of any parameters [2, 100, 101]. Many real life
systems display the classical signs of self-organized criti-

cality (such as power-law distributions, long-range corre-
lations, etc.) and the value of α can help to understand
the dynamical origins of these observations.

4.3. Scaling and multiscaling

Scaling has a fundamental importance in statistical
physics. It has found countless successful applications
starting with critical phenomena [102], but more recently
also outside the classical domain of physics, for example
in ecology [103]. In many cases scaling is not bound to
a specific set of system parameters like in the case of
critical phenomena, but it is the generic behavior of the
system as in polymers [104], surface growth [105] and
self-organized criticality [2]. Mono-scaling or gap scaling
means that the probability distribution of a quantity f
depends on the parameter L, usually the system size, as

P(f, L) = f−1F

(
f

LΦ

)

, (31)

where F is a scaling function and Φ is some constant.
This form can account for a number of observations about
power law behavior in real systems.

Both gap scaling and fluctuation scaling characterize a
large number of complex systems. Nevertheless, for the
same quantity only one can be true except in a special
case: If a quantity shows both gap scaling and fluctua-
tion scaling, then this automatically implies α = 1. One
can reverse this argument: If for a quantity one finds
fluctuation scaling with α < 1 then it cannot exhibit gap
scaling.

The proof is straightforward. Any moment of f can be
calculated as

f q
L =

∫ ∞

f0

dff q
P(f, L) ≃ KqL

qΦ, (32)

where ”≃” denotes asymptotic equality and Kq > 0.
From Eq. (32) it follows that

σ2
L = f2

L − fL
2 ≃

K2L
2Φ − K2

1L2Φ = (K2 − K2
1)L2Φ. (33)

We combine EFS and Eq. (33), eliminate L and find that

now σ2
L ∝ fL

2
, i.e., α = 1.
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The only possibility for the coexistence of gap scaling
(31) and fluctuation scaling (5) with α < 1 is when the
constant factor in the variance vanishes:

(K2 − K2
1 ) = 0.

In this case the gap scaling form does not describe the
variance, that is instead given by the next order (cor-
rection) terms. Nevertheless, even if it is so, the leading

order of the variance is still zero, and consequently F is
proportional to a Dirac-delta:

F

(
f

LΦ

)

∝ δ
(
f/LΦ − K1

)
.

This case is pathological, and it is usually not considered
as scaling. In fact, the previous section contained one
such example: The number of up spins in a critical Ising
model follows this sort of statistics. Fluctuations scale
anomalously (σ2

L ∝ Ld+2−η), whereas their leading order

vanishes because f2 ≃ f
2 ≃ L2d/4. Such strange scaling

arises as a sign of criticality when the scaling variable is
an extensive quantity, for which only the fluctuations are
connected to those of the order parameter.

For example, in ecology there do exist species with
α ≈ 1, for which a gap scaling form of the probability
density of f could be valid. However, this value is by
no means universal (cf. Fig. 1). Similarly, α < 1 was
observed for Internet router traffic [7] or the traded value
on stock markets [56]. These quantities cannot have a gap
scaling form.

Instead of gap scaling, one can assume multiscaling,
but the results do not change crucially. A probability
distribution shows multiscaling if its size dependence is
of the form

ln P(f, L)/ ln(L/L0) = −F [ln(f/f0)/ ln(L/L0)], (34)

where f0 and L0 are appropriately chosen constants. The
moments can be calculated by expressing the density
function from Eq. (34) and substituting into the defi-
nition

f q
L =

∫ ∞

0

f q
P(f, L)df =

∫ ∞

0

f q

(
L

L0

)−F [ln(f/f0)/ ln(L/L0)]

df ≃

f q
0

(
L

L0

)qa(q) (
L

L0

)−F [a(q)]

≃ KqL
τ(q).

The usual approach is that the value of the integral is
dominated by the point f∗(q) where the integrand is max-
imal. Then

a(q) =
ln[f∗(q)/f0]

ln(L/L0)
,

and

τ(q) = max
a

[qa − F (a)],

or equivalently τ(q)
∂q = a. Now we are back at the same

situation as with gap scaling, since

fL ≃ K1L
τ(1)

and

σ2
L = f2

L − fL
2 ≃ K2L

τ(2) − K2
1L2τ(1).

One expects that τ(2) ≥ 2τ(1), because the variance
must remain non-negative for arbitrarily large L. If

τ(2) > 2τ(1) then the first term dominates σ2
L, and

α = τ(2)
2τ(1) , but this value is greater than 1. For exam-

ple Tebaldi et al. [106] report that in the Bak-Tang-
Wiesenfeld sandpile model of L linear size, the distribu-
tion of the number of topplings f in an avalanche follows

f q
L ∝ Lτ(q) with τ(1) ≈ 2, and τ(2) ≈ 4.7. This results

in an α ≈ 1.17.
The other possibility is again τ(2) = 2τ(1), and α = 1

(unless the leading order terms in σ2 compensate to zero).
This solution offers nothing new compared to gap scaling.
Such relationships can be seen, e.g., in the very same
BTW model for the distribution of the area affected by
avalanches [106].

The conclusion: If a quantity shows gap scaling with
a scaling function which is not fully degenerate (not a
Dirac-delta), it must follow α = 1. If there is multiscal-
ing, then fluctuation scaling with α > 1 is also possible,
but such values are rarely observed and should be taken
with care.

4.4. Binary forest model

In this section we introduce a toy model that can be
used to better illustrate the ideas of Sections 4.2-4.3.
Moreover, we will show that those are in full analogy with
the findings of Section 2.3.2 for the reproductive activity
of trees. For an easier understanding we will present the
model in that language.

Let us consider a forest that consists of N trees. For
simplicity we also assume that these are situated on a
one-dimensional regular lattice, but any higher dimen-
sional generalization is straightforward. In the year t the
reproductive activity (i.e. seed count) of every tree n
is characterized by a random variable Vn(t). Again, for
simplicity we consider V ’s as binary variables, which are
1 with probability p and 0 with probability 1 − p. Be-
cause it takes several years for a new tree to reach its
full reproductive capabilities, given that the observation
period is short enough, we can neglect the changes in N
due to seed production and tree growth.

The year-to-year correlations in seed counts are ne-
glected. On the other hand, it is known [48] that the
reproductive activity of forests exhibits long-range spa-

tial dependence, with significant positive correlations for
distances of thousands of kilometers. The distance de-
pendence can be fitted approximately by

C(∆n) ∝ 〈VnVn+∆n〉 − 〈Vn〉2 ∝ ∆n2HV −2, (19)
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see Section 2.3.2. The total seed count is given by the
usual form

fN =

N∑

n=1

Vn.

The standard deviation of the sum of random variables
correlated according to Eq. (19) scales as

σN =

√

〈f2
N 〉 − 〈fN 〉2 ∝ NHV

with HV being the Hurst exponent [cf. Eq. (10)],
whereas

〈fN 〉 = pN.

The two equations can be combined into TFS with

αT = HV . (20)

To the careful reader it should be clear that almost
the same model was discussed in Section 4.2. There we
argued that in a critical Ising model whether any given
spin points upwards (1) or downwards (0) is essentially
a binary random variable with p = 1/2. Moreover the
spin alignments are power-law correlated in space, such
that the power of the decay is related to the FS exponent
α. This was expressed by Eq. (30), which is essentially
equivalent to (20). The binary forest model only differs
from the Ising case in that correlations between the ran-
dom variables are given a priori, and not generated by
the thermodynamics.

Now we can move on to simulation results.11 Fig. 18
shows the dependence of σN on N and 〈f〉, the two plots
are basically equivalent due to 〈f〉 = pN . Fig. 19(left)
illustrates that the fluctuations in systems of the same
size increase rapidly with HV . This is due to a strong
synchronization of the individual constituents [see Fig.
19(right)]. The relationship (20) is illustrated in Fig. 20.

5. DISCUSSION

In this section we present our view about unsettled
questions related to fluctuation scaling. We also discuss
recent, sometimes controversial techniques that might
help the understanding of FS.

11 Except for the trivial case HV = 1/2 (when V ’s are not strongly
correlated) the above model is not very straightforward to sim-
ulate. We generated a one-dimensional fractional Brownian mo-
tion time series by applying the method of Koutsoyiannis [107],
and then converted it into a sequence of 0’s and 1’s12. The con-
version slightly decreases the value of the Hurst exponent, which
thus had to be measured independently by Detrended Fluctua-
tion Analysis [61]. For simplicity, we fixed the number of trees,
because the effect of externally imposed noise (Σ2

N > 0) has
already been studied in detail in Section 3.2.2 and, e.g., Refs.
[7, 33] for other models.

5.1. Separation of global and local dynamics

In Section 3.2 we argued that a system whose internal
dynamics can be mapped onto the central limit theorem
displays fluctuation scaling with α = 1/2. On the other
hand, if one imposes a strong external driving to the sys-
tem, the behavior crosses over to α = 1. One example
was shown in Section 4.1 in the case of random walks on
complex networks. There the fluctuation was given by
Eq. (26), which has the structure

σ2
i = 〈fi〉 + A2 〈fi〉2 , (35)

where A is proportional to the strength of the external
driving. If A ≪ 1 one finds α = 1/2, whereas in the
strongly driven limit A ≫ 1 the first term is negligible
and α = 1.

Now assume that we do not know the strength of ex-
ternal driving and we want to approximate it from data.
We can introduce the global activity F (t) of the system
as a sum over all constituents:

F (t) =
N∑

i=1

fi(t). (36)

Ref. [31] suggests that if our system has many elements,
then F (t) will be proportional to the external force, be-
cause the independent fluctuations of the elements aver-
age out in the sum (36), and what remains is only the
factor of the common external driving. This argument
implicitly assumes, that the external force contributes to
the fluctuations of the elements in a coherent way, i.e.,
fi(t) can be written in the form

fi(t) = f int
i (t) + f ext

i (t), (37)

where

f ext
i (t) = AiF (t). (38)

This formula is a form of linear response, where: (i) Ai

is not allowed to depend on time because of stationarity.
(ii) More importantly, all nodes are affected by driving
instantaneously or with the same constant time lag.

After the summation of Eq. (36) we find that it is
consistent with Eq. (37), if the normalization condition
∑

i Ai = 1 is satisfied. In order to keep Eqs. (35) and (37)
consistent in the strongly driven limit, the only possible
choice is

Ai =
〈fi〉
〈F 〉 . (39)

By this definition automatically
〈
f int

i

〉
= 0 and 〈f ext

i 〉 =
〈fi〉. All time series have finite standard deviations,
which are defined in the usual way, for example σF =√

〈F 2〉 − 〈F 2〉. With these

σext
i =

σF

〈F 〉 〈fi〉 , (40)
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Figure 18: (left) Scaling plots of σ versus N generated by Detrended Fluctuation Analysis of Vn(t) in the binary forest model.
The slopes correspond to the (spatial) Hurst exponents HV ≈ 0.5, . . . , 0.95 from bottom to top, see Eq. (10). (right) Scaling
plots σ versus 〈f〉 for FS in the same data. The slopes correspond to the values of αT ≈ 0.5, . . . , 0.95.
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Figure 19: (left) Examples of fi(t) time series for a ”forest” with N = 300 ”trees”. The Hurst exponent HV between the trees
was varied: HV ≈ 0.5, 0.65, 0.8, 0.95 increasing from bottom to top. The data were shifted by the addition of a constant,
but they were not stretched in any way. One can see that due to the increasing synchronization of the constituents, relative
fluctuations increase rapidly. (right) Snapshot of Vi,n series (at a fixed time t) for a forest with N = 300 elements. The data
were shifted by the addition of a constant. The Hurst exponent HV between the elements was varied: HV ≈ 0.5, 0.65, 0.8, 0.95
increasing from bottom to top. Spatial synchronization increases with the growth of the Hurst exponent.

so the external component follows FS with α = 1 in any

system. This appears consistent with the fact that in
strongly driven systems f itself also shows α = 1, not
only the external component. However, this is in fact
just a trivial consequence of how the external component
was defined.

Ref. [31] calls the process of assigning the internal and
external components ”noise separation”, and claim that
the procedure works well for the random walk model. For

each node they define a noise ratio

ηi =
σext

i

σint
i

,

which is zero in the absence of external driving, and large
when the fluctuations of the external component are dom-
inant.

It would be tempting to attribute the real world ob-
servations of α ≈ 1 to external driving, and show that
in these cases typically η ≫ 1. However, we will demon-
strate on some examples that noise separation has strong
limitations.
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Figure 20: The equality αE = HV (dotted line) in simulations
of the binary forest model. The measurement points align
very closely to the line, with some statistical deviations.

Ref. [31] finds that the fluctuations of Internet (Abiline
backbone) traffic show TFS with α = 1/2 and typically
η ∼ 0.1. While this appears very convincing, a more
detailed analysis of a subset of the same data [32] instead
finds α = 0.7− 0.8. The latter study suggests congestion
as the origin of the increase value of α, and does not
assume any external driving force.

Ref. [7] reports, that river level fluctuations fall into
the class α = 1. It seems plausible that water levels
fluctuate due to rainfall on the river basin, which can be
understood as external driving. However, noise separa-
tion is impossible here, because the driving is not coher-
ent. The global factor F (t) =

∑

i fi(t) is meaningless,
because the response times of the water level, and the
timing of precipitation vary from river to river. Hence
Eq. (38) is not valid.

To our knowledge, our study [56] was the first to re-
veal fluctuation scaling in the trading activity of stocks.
Noise separation was carried out there, finding that the
typical value of ηi increases with the time window ∆t.
Because α also shows a similar tendency (cf. Fig. 6),
we suggested that external driving must play a role in
this effect. We also argued that this is because informa-
tion needs a finite time to spread on the market. On the
scale of a few minutes the role of external information
is small and localized, whereas on the long run trading
is dominated by the external macroeconomic trends and
news.

Later we proposed a much simpler explanation [8],
which was also summarized in Sections 2.3.4 and 3.3.1
of this review. In the stock market (and human dynam-
ics, see Section 2.4.2) one observes, that for long times
α(∆t) = α∗ + γ log ∆t and Hi = H∗ + γ log 〈fi〉 with
some γ > 0. These laws have not yet been related to

any external force, even though the possibility cannot be
ruled out.

How would noise separation work in this case?

1. Clearly σF ∝ ∆tHF , with HF ≈ maxi Hi, because
F is the sum of all fi’s, and the scaling of the sum
is dominated by the highest Hurst exponent.

2. σext
i ∝ σF ∝ ∆tHF . On the other hand, if

σext
i < σint

i , then one expects that qualitatively
σint

i ∝ ∆tHi .

3. Thus the ratio ηi = σext
i /σint

i should typically grow
as long as ηi < 1. This observation of Ref. [56] is
hence no proof of any particular external influence.

While to present further calculations is not the purpose
of this review, we believe, that η ≃ 1 can arise from
spurious effects. A value ηi > 1 consistently, for many
nodes has only been observed in a single study where
η ≃ 1.5 [60]. Our present understanding is that noise
separation has a limited range of applicability.

Finally, we would like to point out that to identify
the ensemble average (36) with some external force is
somewhat controversial. Since we do not have any infor-
mation about the origin or the physical meaning of the
factor F (t), it is probably more appropriate to call this
and f ext

i ’s global and not external factors. Accordingly,
f int

i ’s are better called local, rather than internal factors
when it is unknown how much they represent internal
processes at the nodes.

5.2. Limit theorems for sums of random variables

In Section 3.2.1 we briefly remarked on the connection
of α = 1/2 to the central limit theorem. We recall that
f is written as a sum over the constituents (other ran-
dom variables) whose number N we will consider as time
independent:

f =

N∑

n=1

Vn.

Let us assume that a general form of central limit theo-
rem is applicable, so that

∑N
n=1 Vn − N 〈V 〉

NαΣV
→ X, (41)

where X is some random variable and ”→” means con-
vergence in distribution for N → ∞. In the language of
FS the same equation reads

∑N
n=1 Vn − 〈f〉

K 〈f〉α → X, (42)

where K is a constant. The conceptual difference is
only that since we know that 〈f〉 = N 〈V 〉, we can use

〈f〉 〈V 〉−1
as a surrogate variable for N .
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This analogy tells us that the appearance of FS
throughout disciplines might be due to the generality of
certain limit theorems. The trivial example is of course
that of i.i.d. variables with positive mean and finite vari-
ance, leading to the value α = 1/2, but there are several
other cases.

If the V ’s are i.i.d., but their distribution decays
asymptotically as P(f) ∝ f−(λ+1) with 0 < λ < 2, then
the Lévy-Gnedenko central limit theorem 13 is applicable
[87]. That is in spirit similar to Eq. (41), with α = 1/λ.
The difference is that σ, and if λ ≤ 1 even 〈f〉 is infinite.
However, for N < ∞ they will have some finite effective
value, which can show apparent fluctuation scaling with
some non-trivial value of α.

Contrary to the relative simplicity of independent
(and possibly identically distributed) random variables,
dependent variables can be extremely diverse. They
have no general theory, and the number of universality
classes/limit theorems is infinite. Their structure is not
always fully described by pairwise correlations and Hurst
exponents (cf. Sections 4.2-4.4). In these cases some-
times there exists no limit distribution, or, e.g., α < 1/2
or α > 1 in Eq. (41) [109].

Even for the usual 1/2 ≤ α ≤ 1 values there is only
a limited set of results, here we only mention a few in-
spired by statistical mechanics. In a series of papers Ellis,
Newman and Rosen [99, 110, 111] show that in some sta-
tistical mechanical systems physical quantities can obey
Eq. (41) with α = 1−1/2k, where k is a non-negative in-
teger. For example, in the Curie-Weiss mean field model
the number of up spins obeys k = 2 and α = 3/4 at
criticality, and the distribution of X can also be given
explicitly. In Section 4.2 we arrived at the same expo-
nent using heuristic arguments. Baldovin and Stella [112]
recently published some more general results on a mean-
field theory of strongly correlated random variables. In
their model fine-tuning the strength of correlations allows
for any 1/2 ≤ α ≤ 1, much in the spirit of Section 4.4
and Ref. [46].

5.3. The connection of ensemble and temporal

averages

Let us now return to the connection between the two
laws

σi(∆t) ∝ 〈fi〉αT (3)

and

σN (∆t) ∝ fN
αE

. (5)

These correspond to two definitions of the statistical
quantities: (i) for Eq. (3) the mean and the standard

13 In fact the conditions of the Lévy-Gnedenko central limit theo-
rem are somewhat looser.

deviation are calculated as temporal averages; (ii) for Eq.
(5) they are calculated on an ensemble of subsystems of
the same size.

For the mere existence of such quantities it is necessary
to assume that: (i) signals with the same mean have the
same statistical properties, and the processes are station-

ary; or (ii) systems of the same size can be considered ele-
ments of the same statistical ensemble, which is a kind of
a homogeneity condition. In real systems neither of these
conditions holds exactly, but they often prove to be good
approximations. A deviation from these assumptions is
one possible source of the observed broadening of the
scaling plots. For example, in the case of precipitation
data in Section 2.4.3 we found that mean precipitation
is not the only determinant of the amplitude of fluctua-
tions. Areas with the same mean precipitation are not
equivalent, because they can correspond to very differ-
ent climates. Factors such as height and geographical
position are also relevant.

A related concern is the presence of correlations [113].
The observations may be correlated in space or time. (i)
Two nodes (e.g., populations or weather stations) which
are located close to each other can have significant cross-
correlations. Fits can be biased, because the observa-
tions are not independent. (ii) The signals of individual
nodes can have strong temporal autocorrelations, which
can amplify statistical errors when the time series are not
long enough [82].

A more delicate question is the connection between the
two types of FS, which has been very vaguely investigated
in real systems so far. First of all, the two factors cannot
be separated completely. McArdle et al. [81] point out
this problem through the example of animal populations.
(i) The measurement of the number of individuals in an
area takes a finite time. There is an in and outflow of
individuals, so the number fluctuates. Thus temporal
dynamics can affect the results. (ii) If we want to measure
the time series of the size of a given population, we have
to assign a spatial scale as what to consider a population.
The temporal dynamics will depend on this spatial scale
of sampling, possibly in a non-trivial way.

Taylor and Woiwod [88] conducted a very large scale
study of the two (temporal and ensemble) FS laws in
animal populations. A systematic comparison is possible
when the same sites sampled are at the same time [81].
Taylor and Woiwod calculated the temporal and spatial
means and standard deviations of the abundance of some
aphids, moths and bird, then calculated αT and αE for
each species.

First of all, they found that the temporal and ensem-
ble means of population differ significantly. Thus it is not
surprising that the values of α differ as well. There was
absolutely no systematic relationship between αT and
αE, and even the same species can show several such
values depending on its natural environment. Rather
interestingly, the only systematic dependence between
species is the presence of positive correlations between
the value of α’s, and average population size. For exam-
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ple, for temporal data this means that αT is correlated

with 1/M
∑M

i=1 〈fi〉. The correlations are present in both
cases, although stronger for the temporal variant. Taylor
and Woiwod [88] also suggested, that the interactions be-
tween individuals might contribute to the ensemble law
more than to the temporal one.

In some studies such as ecology or climatology the def-
inition of the spatial scale comes naturally. Still, most
systems have some hierarchical structure on which a de-
gree of aggregation is possible. For example, it is possible
to analyze the fluctuations of Internet traffic at the au-
tonomous system level instead of the router level, which
might have a different dynamics. On the stock market
TFS holds not only for individual stocks, but also when
we consider the trading activity of industry sectors [49].

In sum, the relationship between ensemble and tempo-
ral fluctuation scaling is rather unclear in real systems.
The exponents αE and αT are seldom calculated for the
same system, and when they are calculated, they have
different values.

5.4. Fluctuation scaling for growth rates

To be able to interpret FS for temporal fluctuations
one has to assume that the underlying system is station-
ary. For example, in the binary forest model of Section
4.4 we assumed that the number of trees is constant and
we neglect the contribution of reproduction to the pop-
ulation. To depart from stationarity, we can consider a
growing population of Ni(t) individuals, all of which can
reproduce at a time t [Vi,n(t) = the number of offsprings],
die [Vi,n(t) = −1] or do nothing [Vi,n(t) = 0]. The popu-
lation can now be written as a sum

Ni(t + 1) = Ni(t) +

Ni(t)∑

n=1

Vi,n(t).

Ni(t) is obviously not stationary, because its distribution
depends on its value in the previous time step. Never-
theless, one can still construct something similar to TFS
by using a restricted ensemble average as follows.

Let us define the growth rate of a population as

fi(t) = Ni(t + 1) − Ni(t).

Now let us make an ensemble of growth observations
when the initial population was N . The growth rate in
this restricted sample is given by

fN =

N∑

n=1

Vn.

Because f can be negative, to postulate TFS for size
dependence it is more convenient to use N and not 〈f〉
as the scaling variable. We conjecture

σN =

√

〈f2
N 〉 − 〈fN〉2 ∝ Nα (43)

in the spirit of the previous sections, and this is exactly
what is found in many systems.

Keitt and Stanley show [67, 68] that the growth rate
fluctuations of animal populations scale as a non-trivial
power of the initial population N . The finding is not
specific for population growth, but occurs in many set-
tings where a positive quantity fluctuates by the addition
and subtraction of increments. The same behavior was
found by Lee et al. [62] for the growth rates of business
firms, and Amaral et al. [63] even presents a model of the
complex structure of the business growth process which
predicts the correct exponent.

Jánosi and Gallas [64] criticize these results, and show
the same distribution of growth rates and the scaling law
(43) for the water level fluctuations of the river Danube,
which trivially must have a structure that is very different
from business firms. Moreover, they show that the daily
absolute change of water level scales with the average wa-
ter level on the same day, and there is a clear crossover
behavior between two scaling regimes with α = 1/2 and
α = 1. A related study by Dahlstedt and Jensen [65]
estimates α ≈ 0.9 − 1, and suggests that FS can be de-
composed into two distinct scaling laws: σA ∝ Aa and
〈fA〉 ∝ Ab, where A is the area of the river basin.

From the above it is clear that the size-dependent scal-
ing of growth rate fluctuations is a variant of fluctuation
scaling for nonstationary (growing) populations. The
same formalism can be applied in both cases, and many
results could be mutually applied.

6. CONCLUSIONS

The aim of this review was to provide a broader per-
spective on Taylor’s law and fluctuation scaling, and to
encourage the collaboration between disciplines where
these phenomenona are observed. We also outlined a
classification scheme on the meaning of the FS exponents.
The main conclusion is that several types of mechanisms
can lead to the same values of α’s. A similar concern was
formulated in the 1982 paper of Taylor and Woiwod [88]:

”Extrapolation of dynamic principles from [...] obser-
vation is likely to be misleading. We find great differ-
ences between [species], but the overlap is also very large.
Whilst it is improbable that the details of [...] behaviour
in a bird and an aphid would be alike, there are common
elements in the [...] structure of their populations.”

Even though fluctuation scaling alone is not enough to
identify the underlying dynamics of a system, it is possi-
ble to exclude some possibilities, and reject certain mod-
els which would generate unrealistic α’s. To gain a deeper
understanding of how this can be done is a formidable
task. Why do, e.g., car traffic, the seed production of
forests and cell count fluctuations behave similarly in this
respect? We believe that a possible common origin of all
fluctuation scaling laws is the generality in the underlying
mathematical structures. Empirical data from virtually
all fields of science show fluctuation scaling. In order to
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improve our understanding of this phenomenon, it will
become essential to bridge the gap between several disci-
plines.
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Appendix A: THE COMPONENTS OF THE

FLUCTUATION σ2

A large part of this review is concerned with the stan-
dard deviation of the sums of random variables. This is
defined as

σ2 =

〈(
N∑

n=1

Vn

)2〉

−
〈

N∑

n=1

Vn

〉2

,

where Vn are the individual (not necessarily independent)
random variables, and N is the number of these variables
which itself can be random.

Let P(N) be the probability that the number of vari-
ables is N . The sum of N variables can be written as
VN =

∑N
n=1 Vn. Let P(VN ) denote the density function

of this sum when N is fixed. Then the standard deviation
of the sum when N itself is a random variable is

σ2 =
∑

N

P(N)

∫

dVN P(VN )V 2
N −

(
∑

N

P(N)

∫

dVN P(VN )VN

)2

=

∑

N

P(N)









∫

dVNP(VN )V 2
N

︸ ︷︷ ︸

〈V 2

N〉

−
(∫

dVNP(VN )VN

)2

︸ ︷︷ ︸

〈VN 〉2









︸ ︷︷ ︸

Σ2

VN
=NΣ2

V

+

∑

N

P(N)

(∫

dVN P(VN )VN

)2

︸ ︷︷ ︸

〈VN 〉2=N2〈V 〉2

−








∑

N

P(N)

∫

dVNP(VN )VN

︸ ︷︷ ︸

〈VN 〉=N〈V 〉








2

= Σ2
V

∑

N

P(N)N

︸ ︷︷ ︸

〈N〉

+

〈V 〉2










∑

N

P(N)N2

︸ ︷︷ ︸

〈N2〉

−
(
∑

N

P(N)N

)2

︸ ︷︷ ︸

〈N〉2










︸ ︷︷ ︸

Σ2

N

Thus finally

σ2 = Σ2
V 〈N〉 + 〈V 〉2 Σ2

N .

In the case when the Vn’s are strongly (i.e., power law)
correlated Σ2

VN
= Σ2

V N2HV where HV is the Hurst expo-
nent as defined in Eq. (10), and so

σ2 = Σ2
V

〈
N2HV

〉
+ 〈V 〉2 Σ2

N .

The correlations in N are not reflected directly in this
expression. Instead, they affect how ΣN changes with
the time window size ∆t as pointed out in Section 3.3.1.

Appendix B: TWEEDIE MODELS AND IMPACT

INHOMOGENEITY

In this appendix we prove that origin of the non-trivial
α values in the formalism of Kendal [18, 69] is essen-
tially due to impact inhomogeneity. Kendal’s formalism
is based on the so-called Tweedie exponential dispersion
models [92]. These form a family of random distributions,
characterized by the logarithmic cumulant function (see
Ref. [92], p. 1516)

K∗
f (s) = ln

〈
esf
〉

f
= λθ[gθ(s) − 1], (B1)
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where s is a constant and f is the random variable. We
use natural logarithms (ln), as opposed to other parts of
this review, where we used 10-base logarithms (log). We
also introduced the notation 〈x〉y =

∫∞

0
dyexy. The two

terms above are

λ =
a − 1

ka

(
kθ

1 − a

)a

, (B2)

and

gθ(s) =
(

1 +
s

θ

)a

. (B3)

θ > 0 and a < 0
As pointed out both by Kendal [18] and Bar-Lev and

Enis [92], the form (B1) is characteristic of compound
Poisson processes [87]. These are distributions of random
variables of the following type:

f =
N∑

n=1

Vn,

where N is Poisson distributed, and Vn are i.i.d. random
variables. The proof is straightforward, however, we in-
clude it here for completeness. The density function of a
compound Poisson variable f can be written as a com-
plete probability

P (f) =

∞∑

N=0

P (f |N)P (N).

The characteristic function is given by

〈
esf
〉

f
=

∫

dfesfP (f) =

∞∑

N=0

P (N)

∫

dfesfP (f |N) =

∞∑

N=0

P (N)

∫

dfesfP (V1 + V2 + . . . VN ) =

∞∑

N=0

P (N)
〈
esV
〉N

V
.

For the last equality we used the property of the charac-

teristic function that
〈
es

P

n
VN
〉

=
〈
esV
〉N

. Then, know-
ing that if N is Poisson distributed with mean 〈N〉 then

its characteristic function is
〈
etN
〉

= e〈N〉(et−1),

∞∑

N=0

P (N)
〈
esV
〉N

V
=
〈

eN ln〈exp(sV )〉
V

〉

N
=

e〈N〉(〈exp(sV )〉
V
−1) =

〈
esf
〉

f
. (B4)

The next step is to compare Eqs. (B2), (B3) and (B4).
One finds that for the Tweedie model

〈
esV
〉

V
= gθ(s) =

(

1 +
s

θ

)a

.

This is the characteristic function of a gamma distribu-
tion. Its moments can be determined as usual:

〈V 〉 =

[
∂

∂s

〈
esV
〉

V

]

s=0

= aθ−1,

〈
V 2
〉

=

[
∂2

∂s2

〈
esV
〉

V

]

s=0

= a(a − 1)θ−2,

Σ2
V =

〈
V 2
〉
− 〈V 〉2 = −aθ−2.

For the expectation value of the Poisson variable:

〈N〉 = λ =
a − 1

ka

(
kθ

a − 1

)a

∝ θa.

Furthermore,

〈f〉 =

[
∂

∂s
K∗

f (s)

]

s=0

= λaθ−1,

and

σ2 =

[
∂2

∂s2
K∗

f (s)

]

s=0

= λa(a − 1)θ−2.

Let us recall, that also λ contains terms with θ. Simple
calculation yields

σ2 = k 〈f〉2α
,

where 2α = (a − 2)/(a − 1). Consequently:

(i) Let us introduce β = −1/a. Then

〈V 〉 ∝ 〈N〉β , (17)

which is impact inhomogeneity.

(ii) Moreover, σ ∝ 〈f〉α with

α =
1

2

(

1 +
β

β + 1

)

, (18)

exactly the same relationship as in Section 3.3.2.

Appendix C: FLUCTUATIONS IN THE

NETWORK RANDOM WALKER MODEL

This section contains calculations starting from the
master equation (21). The total number of visitations
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to node i is the sum over all steps. The substitution of
Eq. (21) gives

fi =

smax∑

s=1

Ni(s) =

smax−1∑

s=0

∑

j∈Ki

Nj(t−1)
∑

n=1

δn(j → i; s), (C1)

where δn,s(j → i; s) is a variable which is 1 if the n’th
token of node j in step s jumps to node i (happens with
probability 1/kj), and 0 otherwise. ki is the degree of
node i, Ki is the set of neighbors of node i, and Nj(t = 0)
corresponds to the initial condition.

For any finite network one can switch the order of the
first two sums, and in

fi =

smax∑

s=1

Ni(s) =
∑

j∈Ki

smax−1∑

s=0

Nj(t−1)
∑

n=1

δn(j → i; s)

if S is taken large and because for any fixed n the vari-
ables δn,s(j → i) are independent, then due to the central
limit theorem the last two sums converge to independent
Gaussians:

fi =

smax∑

s=1

Ni(s) =
∑

j∈Ki

(

smax 〈Nj〉
kj

+

√

smax 〈Nj〉
kj

Gj(s)

)

,

(C2)
where Gj(s) are i.i.d. standard Gaussians such that

〈Gi(s)Gj(r)〉 = δijδsr, (C3)

where the right hand side has two Kronecker-deltas. Con-
sequently

〈fi(t)fj(t)〉 = 〈fi(t)〉 〈fj(t)〉 , when i 6= j. (C4)

One can take the expectation value of the left hand
side of Eq. (C2). Finally,

〈fi〉 =
∑

j∈Ki

smax 〈Nj〉
kj

. (C5)

By substitution one can check that the solution is

〈fi〉 = smax 〈Ni〉 = ki
smaxW
∑

j kj
, (C6)

and all the walkers are accounted for:
∑

i 〈fi〉 = smaxW .
Now let us calculate the standard deviation for both

sides of Eq. (C2):

σ2
i =

〈


∑

j∈Ki

(

smax 〈Nj〉
kj

+

√

smax 〈Nj〉
kj

Gj

)



2〉

−

〈
∑

j∈Ki

(

smax 〈Nj〉
kj

+

√

smax 〈Nj〉
kj

Gj

)

︸ ︷︷ ︸

(a)

〉2

= . . .

(a) can be replaced by
smax〈Nj〉

kj
, because 〈Gj〉 = 0.

σ2
i =

〈


∑

j∈Ki

smax 〈Nj〉
kj





2〉

︸ ︷︷ ︸

(b)

+

2

〈


∑

j∈Ki

smax 〈Nj〉
kj








∑

l∈Ki

√

smax 〈Nl〉
kl

Gl





〉

︸ ︷︷ ︸

(c)

+

〈


∑

l∈Ki

√

smax 〈Nl〉
kl

Gl





2〉

︸ ︷︷ ︸

(d)

−
〈
∑

j∈Ki

smax 〈Nj〉
kj

〉2

︸ ︷︷ ︸

(e)

One can use Eq. (C4) to write

(b) =

〈
∑

j∈Ki

smax 〈Nj〉2
k2

j

〉

+
∑

j 6=l∈Ki

s2
max 〈Nj〉 〈Nl〉

kjkl
.

(c) = 0, because of Eq. 〈Gl〉 = 0.

(d) =

〈
∑

l∈Ki





√

smax 〈Nl〉
kl

Gl





2〉

=

〈
∑

l∈Ki

smax 〈Nl〉
kl

〉

,

because of (C3). By changing a summation variable, one
can write

(e) =
∑

j,l∈Ki

s2
max 〈Nj〉 〈Nl〉

kjkl
(C7)

Combining all the above, one gets

〈
∑

j∈Ki

smax 〈Nj〉2
k2

j

〉

︸ ︷︷ ︸

(f)

+
∑

j 6=l∈Ki

s2
max 〈Nj〉 〈Nl〉

kjkl

︸ ︷︷ ︸

(g)

+

∑

l∈Ki

smax 〈Nl〉
kl

−
∑

j,l∈Ki

s2
max 〈Nj〉 〈Nl〉

kjkl

︸ ︷︷ ︸

(h)

.

(f) and (g) and (h) combine to

〈
∑

j∈Ki

smax 〈Nj〉2
k2

j

〉

−
∑

j∈Ki

smax 〈Nj〉2
k2

j

≡
∑

j∈Ki

σ2
j

kj
.

Then,

σ2
i =

∑

j∈Ki

σ2
j

k2
j

+
∑

j∈Ki

smax 〈Nj〉
kj

.

The second term can be evaluated from Eq. (C5), to find

σ2
i =

∑

j∈Ki

σ2
j

k2
j

+ 〈fi〉 . (C8)



32

[1] T. Vicsek, Fractal Growth Phenomena (World Scientific
Publishing, Singapore, 1992).

[2] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.
59, 381 (1987).

[3] V. Pareto, Cours d’economie politique (Droz, Geneva
Switzerland, 1896).

[4] G. K. Zipf, Harvard Studies in Classical Philology 15,
1 (1929).

[5] L. Taylor, Nature 189, 732 (1961).
[6] H. F. Smith, J. Agric. Sci. 28, 1 (1938).
[7] M. de Menezes and A.-L. Barabási, Phys. Rev. Lett. 92,

28701 (2004).
[8] Z. Eisler and J. Kertész, Phys. Rev. E 73, 046109

(2006).
[9] B. B. Mandelbrot, The Fractal Geometry of Nature (W.

H. Freeman, San Francisco, 1982).
[10] B. A. Maurer and M. L. Taper, Ecology Letters 5, 223

(2002).
[11] B. Grenfell et al., Nature 394, 674 (1998).
[12] O. N. B. rnstad and B. T. Grenfell, Science 293, 638

(2001).
[13] B.-E. Saether et al., Science 287, 854 (2000).
[14] P. Moran, Aust. J. Zool. 1, 291 (1953).
[15] D. H. Reed and G. R. Hobbs, Animal Conservation 7,

1 (2004).
[16] R. Anderson, D. Gordon, M. J. Crawley, and M. P. Has-

sell, Nature 296, 245 (1982).
[17] W. S. Kendal, Ecological Modeling 80, 293 (1995).
[18] W. S. Kendal, Ecological Complexity 1, 193 (2004).
[19] P. A. Marquet et al., The Journal of Experimental Bi-

ology 208, 1749 (2005).
[20] R. B. R. Azevedo and A. M. Leroi, Proc. Natl. Acad.

Sci. USA 98, 5699 (2001).
[21] W. S. Kendal, Journal of Theoretical Biology 217, 203

(2002).
[22] The International SNP Map Working Group, Nature

409, 928 (2001).
[23] W. S. Kendal, Mol. Biol. Evol. 20, 579 (2003).
[24] L. E. Reichl, A Modern Course in Statistical Physics,

2nd edition (Wiley, New York, 1998).
[25] L. Landau and E. Lifshitz, Course of Theoretical Physics

Volume 5: Statistical Physics Part I., 3rd edition (Perg-
amon International Library, Oxford, 1980).

[26] R. Botet et al., Phys. Rev. Lett. 86, 3514 (2001).
[27] R. Botet and M. Ploszajczak, Phys. Rev. E 62, 1825

(2000).
[28] R. Botet and M. Ploszajczak, Nuclear Physics B (Proc.

Suppl.) 92, 101 (2001).
[29] P. Uttley and I. M. McHardy, Monthly Notices of the

Royal Astronomical Society 323, L26 (2001).
[30] S. Vaughan and P. Uttley, to appear in Proc. SPIE

(2007).
[31] M. de Menezes and A.-L. Barabási, Phys. Rev. Lett. 93,

68701 (2004).
[32] J. Duch and A. Arenas, Phys. Rev. Lett. 96, 218702

(2006).
[33] Z. Eisler and J. Kertész, Phys. Rev. E 71, 057104

(2005).
[34] S. Yook and M. de Menezes, Europhys. Lett. 72, 541

(2005).
[35] M. Šuvakova and B. Tadić, Physica A 372, 354 (2006).

[36] J. Duch and A. Arenas, Eur. Phys. J. ST 143, 253
(2007).

[37] A. M. Kilpatrick and A. R. Ives, Nature 422, 65 (2003).
[38] L. Taylor, Journal of Animal Ecology 55, 1 (1986).
[39] R. May, Stability and Complexity in Model Ecosys-

tems, 2nd edition (Princeton University Press, Prince-
ton, 1974).

[40] A. J. Lotka, Elements of Physical Biology (Williams and
Wilkins Company, Baltimore, 1925).

[41] V. Volterra, in Animal Ecology (McGraw-Hill, New
York, 1925), pp. 409–448.

[42] M. J. Keeling, Theoretical Population Biology 58, 21
(2000).

[43] J. N. Perry, Proc. R. Soc. Lond. B 257, 221 (1994).
[44] A. Satake and Y. Iwasa, Journal of Theoretical Biology

203, 63 (2000).
[45] F. Ballantyne IV and A. J. Kerkhoff, Journal of Theo-

retical Biology 235, 373 (2005).
[46] F. Ballantyne IV and A. J. Kerkhoff, Oikos 116, 174

(2007).
[47] A. J. Kerkhoff and F. Ballantyne IV, Ecology Letters 6,

850 (2003).
[48] W. D. Koenig and J. M. H. Knops, The American Nat-

uralist 155, 59 (2000).
[49] Data available upon request.
[50] K. Tallqvist, Folia Forestali 364, 1 (1978).
[51] J. Franklin, Cone production by upper slope conifers,

1968, pacific NW Forest Range Experiment Station Re-
search Paper No. PNW-60.

[52] M. J. Weaver and F. Forcella, Cone production in Pinus
albicaulis forests, 1986, in Proceedings of a symposium
on conifer tree seeds in the Inland Mountain west. USDA
Forest Service General Technical Report INT-203.

[53] M. J. Keeling and B. T. Grenfell, Phyl. Trans. R. Soc.
London B 354, 769 (1999).

[54] M. E. J. Woolhouse, L. H. Taylor, and D. T. Haydon,
Science 292, 1109 (2001).

[55] A. Bar-Even et al., Nature Genetics 38, 636 (2006).
[56] Z. Eisler, J. Kertész, S.-H. Yook, and A.-L. Barabási,

Europhys. Lett. 69, 664 (2005).
[57] Z. Eisler and J. Kertész, Eur. Phys. J. B 51, 145 (2006).
[58] Z. Eisler and J. Kertész, Europhys. Lett. 77, 28001

(2007).
[59] Trades and Quotes Database for 2000-2002, New York

Stock Exchange, New York.
[60] Z.-Q. Jiang, L. Guo, and W.-X. Zhou, Eur. Phys. J. B

57, 347 (2007).
[61] J. Kantelhardt et al., Physica A 316, 87 (2002).
[62] Y. Lee et al., Phys. Rev. Lett. 81, 3275 (1998).
[63] L. A. N. Amaral et al., Phys. Rev. Lett. 80, 1385 (1998).
[64] I. M. Jánosi and J. A. Gallas, Physica A 271, 448

(1999).
[65] K. Dahlstedt and H. J. Jensen, Physica A 348, 596

(2005).
[66] Z. Eisler, I. Bartos, and I. M. Jánosi, in preparation .
[67] T. H. Keitt and H. E. Stanley, Nature 393, 257 (1998).
[68] T. H. Keitt, L. A. N. Amaral, S. V. Buldyrev, and H. E.

Stanley, Phyl. Trans. R. Soc. London B 357, 627 (2002).
[69] W. S. Kendal, Proc. Natl. Acad. Sci. USA 98, 837

(2001).
[70] J. Nacher, T. Ochiai, and T. Akutsu, Modern Physics



33

Letters B 19, 1169 (2005).
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